精英家教网 > 高中数学 > 题目详情

【题目】某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样法,则40岁的以下的年龄段应抽取__________人.

【答案】 37 20

【解析】由系统抽样知识可知,将总体分成均等的若干部分指的是将总体分段,且分段的间隔相等.在第1段内采用简单随机抽样的方法确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号.由题意,第5组抽出的号码为22,因为2(51)×522,则第1组抽出的号码应该为2,第8组抽出的号码应该为2(81)×537.由分层抽样知识可知,40岁以下年龄段的职工占50%,按比例应抽取40×50%20()

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是双曲线的左右焦点,以为直径的圆与双曲线的一条渐近线交于点,与双曲线交于点,且均在第一象限,当直线时,双曲线的离心率为,若函数,则()

A. 1 B. C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥PABCD底面ABCD为菱形BAD60°QAD的中点.

(1)PAPD求证:平面PQB⊥平面PAD

(2)M在线段PCPMtPC试确定实数t的值使得PA∥平面MQB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,过且与轴垂直的弦长为3.

(1)求椭圆的标准方程;

(2)过作直线与椭圆交于两点,问:在轴上是否存在点,使为定值,若存在,请求出点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆C1 和椭圆C2 的焦点相同且a1>a2.给出如下四个结论:

①椭圆C1和椭圆C2一定没有公共点;

a1a2<b1b2.

其中,所有正确结论的序号是(  )

A. ②③④ B. ①③④

C. ①②④ D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在上的函数,

其中,设两曲线有公共点,且在公共点处的切线相同

(Ⅰ)若,求的值;

表示,并求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若向量与向量的夹角为钝角, ,且当时, ()取最小值,向量满足 ,则当 取最大值时, 等于(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

已知极坐标系的极点在直角坐标系的原点处,极轴与轴的非负半轴重合,直线的参数方程为为参数),曲线的极坐标方程为.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)设 分别是直线与曲线上的点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求处的切线方程;

(2)设函数,函数有且仅有一个零点.

(i)求的值;

(ii)若时, 恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案