精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.

 

【答案】

(1)椭圆方程为

(2)在x轴上存在点M(), 使是与K无关的常数.

【解析】

试题分析:(1)∵椭圆离心率为

,∴.        1分

椭圆过点(,1),代入椭圆方程,得.        2分

所以.                          4分

∴椭圆方程为,即.           5分

(2)在x轴上存在点M,使是与K无关的常数.   6分

证明:假设在x轴上存在点M(m,0),使是与k无关的常数,

∵直线L过点C(-1,0)且斜率为K,∴L方程为

 得.      7分

,则      8分

              9分

=

=

=

=                 10分

设常数为t,则.                11分

整理得对任意的k恒成立,

解得,                    12分

即在x轴上存在点M(), 使是与K无关的常数.       13分

考点:椭圆的标准方程及几何性质,直线与椭圆的位置关系,平面向量的数量积。

点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。求椭圆标准方程时,主要运用了椭圆的几何性质,建立了a,bac的方程组。(2)作为研究,应用韦达定理,建立了m的函数式,利用函数观点,求得m的值,肯定存在性,使问题得解。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的离心率为
1
2
,焦点是(-3,0),(3,0),则椭圆方程为(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在由圆O:x2+y2=1和椭圆C:
x2
a2
+y2
=1(a>1)构成的“眼形”结构中,已知椭圆的离心率为
6
3
,直线l与圆O相切于点M,与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,使得
OA
OB
=
1
2
OM
2
,若存在,求此时直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知椭圆的离心率为
2
2
,准线方程为x=±8,求这个椭圆的标准方程;
(2)假设你家订了一份报纸,送报人可能在早上6:30-7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00-8:00之间,请你求出父亲在离开家前能得到报纸(称为事件A)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点,M是椭圆上异于A,B的任意一点,已知椭圆的离心率为e,右准线l的方程为x=m.
(1)若e=
1
2
,m=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰过原点,求e.

查看答案和解析>>

同步练习册答案