精英家教网 > 高中数学 > 题目详情

【题目】如图1,在中, 分别为的中点,点为线段上的一点,将沿折起到的位置,使,如图2.

(1)求证:

(2)线段上是否存在点,使平面?说明理由.

【答案】1见解析2)线段上存在点,使平面.

【解析】试题分析:(1)由题意可证DE⊥平面A1DC,从而有DEA1F,又A1FCD,可证A1F⊥平面BCDE,问题解决;
(2)取A1C,A1B的中点P,Q,则PQBC,平面DEQ即为平面DEP,由DE⊥平面,P是等腰三角形DA1C底边A1C的中点,可证A1C⊥平面DEP,从而A1C⊥平面DEQ.

试题解析:

1)证明:由已知得

,又 平面,面平面

平面

.

2)线段上存在点,使平面.

理由如下:如图,分别取的中点,则.

平面即为平面.

由(1)知平面

是等腰三角形底边的中点

平面,从而平面

故线段上存在点,使平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应关系:

x/百万元

2

4

5

6

8

y/百万元

30

40

60

50

70

(1)假定y与x之间有线性相关关系,求其回归直线方程;

(2)若实际的销售额不少于60百万元,则广告费支出应不少于多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市准备在道路的一侧修建一条运动比赛道,赛道的前一部分为曲线段,该曲线段是函数时的图象,且图象的最高点为.赛道的中间部分为长千米的直线跑道,且.赛道的后一部分是以为圆心的一段圆弧.

(1)的值和的大小;

(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,矩形的一边在道路上,一个顶点在半径上,另外一个顶点在圆弧上,且,求当“矩形草坪”的面积取最大值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电商中“猫狗大战”在节日期间的竞争异常激烈,在刚过去的618全民年中购物节中,某东当日交易额达1195亿元,现从该电商“剁手党”中随机抽取100名顾客进行回访,按顾客的年龄分成了6组,得到如下所示的频率直方图.
(1)求顾客年龄的众数,中位数,平均数(每一组数据用中点做代表);
(2)用样本数据的频率估计总体分布中的概率,则从全部顾客中任取3人,记随机变量X为顾客中年龄小于25岁的人数,求随机变量X的分布列以及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x1 , x2 , x3 , x4 , x5满足0<x1<x2<x3<x4<x5
(1)求证不等式x12+x22+x32+x42+x52>x1x2+x2x3+x3x4+x4x5+x5x1
(2)随机变量X取值 的概率均为 ,随机变量Y取值 的概率也均为 ,比较DX与DY大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(sinx+cosx)2+2cos2x﹣2
(1)求函数f(x)的最小正周期T;
(2)求f(x)的最大值,并指出取得最大值时x取值集合;
(3)当x∈[ ]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则函数 的零点个数是( )
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系 中,过椭圆 )右焦点的直线 两点, 的中点,且 的斜率为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ) 上的两点,若四边形 . 的对角线 ,求四边形 面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,E、F分别为A1C1、B1C1的中点,D为棱CC1上任一点.
(Ⅰ)求证:直线EF∥平面ABD;
(Ⅱ)求证:平面ABD⊥平面BCC1B1

查看答案和解析>>

同步练习册答案