(本小题满分13分)
已知椭圆:上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 过点(,)的动直线交椭圆于、两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,请说明理由.
解: (Ⅰ)设椭圆的焦距为,则由题设可知,解此方程组得
,. 所以椭圆C的方程是. ………5分
(Ⅱ)解法一:假设存在点T(u, v). 若直线l的斜率存在,设其方程为,
将它代入椭圆方程,并整理,得.
设点A、B的坐标分别为,则
因为及
所以
……9分
当且仅当恒成立时,以AB为直径的圆恒过定点T,
所以解得
此时以AB为直径的圆恒过定点T(0,1). ……11分
当直线l的斜率不存在,l与y轴重合,以AB为直径的圆为也过点T(0,1).
综上可知,在坐标平面上存在一个定点T(0,1),满足条件. ……13分
解法二:若直线l与y轴重合,则以AB为直径的圆是
若直线l垂直于y轴,则以AB为直径的圆是 ……7分
由解得.
由此可知所求点T如果存在,只能是(0,1). ……8分
事实上点T(0,1)就是所求的点. 证明如下:
当直线l的斜率不存在,即直线l与y轴重合时,以AB为直径的圆为,
过点T(0,1); 当直线l的斜率存在,设直线方程为,代入椭圆方程,并整理,得
设点A、B的坐标为,则 ……10分
因为,
所以,即以AB为直径的圆恒过定点T(0,1).
综上可知,在坐标平面上存在一个定点T(0,1)满足条件. ……13分
解析
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com