精英家教网 > 高中数学 > 题目详情
(2x+1)4的展开式中含x的奇次方项的系数和等于(  )
A、44B、25C、41D、40
考点:二项式系数的性质
专题:计算题,二项式定理
分析:设f(x)=(2x+1)4=a0+a1x+a2x2+a3x3+a4x4,x分别赋值1,-1,可得两个等式,两式相减,再除以2得到答案.
解答: 解:设f(x)=(2x+1)4=a0+a1x+a2x2+a3x3+a4x4
令x=1,则a0+a1+a2+a3+a4=f(1)=34=81,①
令x=-1,则a0-a1+a2-a3+a4=f(-1)=1.②
①-②得,2(a1+a3)=80,所以奇次项系数之和为40.
故选:D.
点评:本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1,(a>0,b>0)的右焦点F作垂直于x轴的直线,交双曲线的渐近线于A、B两点,若△OAB(O为坐标原点)是等边三角形,则双曲线的离心率为(  )
A、
3
3
B、
2
3
3
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

为了“城市品位、方便出行、促进发展”,近年合肥市正在修建地铁1号线,市某部门问卷调查了n个市民,其中赞城修建地铁的市民占80%,在赞城修建地铁的市民中又按年龄分组,得样本频率分布直方图如图,其中年龄在[30,40]岁的有2500人,年龄在[60,70)岁的有2000人,则m,n的值分别为(  )
A、0.2,12500
B、0.2,10000
C、0.02,12500
D、0.02,10000

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法错误的是(  )
A、两两相交且不过同一点的三条直线必在同一平面内
B、过直线外一点有且只有一个平面与已知直线垂直
C、如果共点的三条直线两两垂直,那么它们中每两条直线确定的平面也两两垂直
D、如果两条直线和一个平面所成的角相等,则这两条直线一定平行

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=ax-2x+2对于1≤x≤4,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出S的值为(  )
A、
3
3
2
B、
3
C、
3
2
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

定义某种运算?,a?b的运算原理如图所示:设f(x)=(0?x)x,则f(x)在区间[-2,2]上的最小值为(  )
A、-2B、-4C、2D、-8

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中是假命题的是(  )
A、?a,b∈R*,lg(a+b)≠lga+lgb
B、?φ∈R,使得函数f(x)=sin(2x+φ)是偶函数
C、?α,β∈R,使得cos(α+β)=cosα+cosβ
D、?m∈R,使f(x)=(m-1)•x m2-2m+3是幂函数,且在(0,+∞)上递减

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax(x<0)
(2-a)x+
2a
3
(x≥0)
满足对任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
>0 成立,则a的取值范围是(  )
A、(1,2]
B、(1,2)
C、(
3
2
,2
D、[
3
2
,2

查看答案和解析>>

同步练习册答案