【题目】已知函数(且)在上恒正,则实数的取值范围为( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆运送这批水果的费用最少为______元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】孔子曰:温故而知新.数学学科的学习也是如此.为了调查数学成绩与及时复习之间的关系,某校志愿者展开了积极的调查活动:从高三年级640名学生中按系统抽样抽取40名学生进行问卷调查,所得信息如下:
数学成绩优秀(人数) | 数学成绩合格(人数) | |
及时复习(人数) | 20 | 4 |
不及时复习(人数) | 10 | 6 |
(1)张军是640名学生中的一名,他被抽中进行问卷调查的概率是多少(用分数作答);
(2)根据以上数据,运用独立性检验的基本思想,研究数学成绩与及时复习的相关性.
参考公式:,其中为样本容量
临界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在实数,使得为上的奇函数,则称是位差值为的“位差奇函数”.
(1)判断函数和是否为位差奇函数?说明理由;
(2)若是位差值为的位差奇函数,求的值;
(3)若对任意属于区间中的都不是位差奇函数,求实数、满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点是抛物线的焦点,直线与相交于不同的两点.
(1)求的方程;
(2)若直线经过点,求的面积的最小值(为坐标原点);
(3)已知点,直线经过点,为线段的中点,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列满足,,.
(1)求证:数列为等比数列;
(2)对于大于的正整数、(其中),若、、三个数经适当排序后能构成等差数列,求符合条件的数组;
(3)若数列满足,是否存在实数,使得数列是单调递增数列?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com