精英家教网 > 高中数学 > 题目详情

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围.
注:是自然对数的底数

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)将代入函数解析式,并将函数解析式中的绝对值去掉,写成分段函数,并将定义域分为两部分:,利用导数分别求出函数在区间上的最大值与最小值,然后进行比较,最终确定函数在区间上的最大值与最小值;(Ⅱ)利用参数分离法将不等式进行转化,借助“大于最大值,小于最小值”的思想求参数的取值范围,不过在去绝对值符号的时候要对自变量的范围进行取舍(主要是自变量的范围决定的符号).
试题解析:(Ⅰ) 若,则.
时,

所以函数上单调递增;
时,
.
所以函数在区间上单调递减,
所以在区间上有最小值,又因为
,而
所以在区间上有最大值.
(Ⅱ)函数的定义域为
,得.           (*)
(ⅰ)当时,
不等式(*)恒成立,所以
(ⅱ)当时,
①当时,由,即
现令, 则
因为,所以,故上单调递增,
从而的最小值为,因为恒成立等价于
所以
②当时,的最小值为,而,显然不满足题意.
综上可得,满足条件的的取值范围是.
考点:利用导数求函数的最值、分段函数、参数分离法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题13分)已知函数
(1)若实数求函数上的极值;
(2)记函数,设函数的图像轴交于点,曲线点处的切线与两坐标轴所围成图形的面积为则当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数().
(1)当时,求函数的单调区间;
(2)当时,取得极值,求函数上的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处的切线方程是x+ y-l=0,其中e为自然对数的底数,函数g(x)=1nx- cx+ 1+ c(c>0),对一切x∈(0,+)均有恒成立.
(Ⅰ)求a,b,c的值;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的极大值;
(2)记的导函数为,若时,恒有成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在的函数,在处的切线斜率为
(Ⅰ)求的单调区间;
(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数F(x )=x2+aln(x+1)
(I)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;
(II)若函数y=f(x)有两个极值点x1,x2,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(Ⅰ)若函数上单调递减,在区间单调递增,求的值;
(Ⅱ)若函数上有两个不同的极值点,求的取值范围;
(Ⅲ)若方程有且只有三个不同的实根,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调区间;
(2)已知对定义域内的任意恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案