精英家教网 > 高中数学 > 题目详情

【题目】袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次. 求:
(1)3只全是红球的概率;
(2)3只颜色全相同的概率;
(3)3只颜色不全相同的概率.

【答案】
(1)解:由题意知本题是一个相互独立事件同时发生的概率,

从袋中摸球,摸到红球的概率是

三次有放回到摸球可以看做是三次独立重复试验,

∴P=


(2)解:利用树状图我们可以列出有放回地抽取3次球的所有可能结果:

3只颜色全相同的概率为P2=2× =2 =


(3)解:3只颜色不全相同的概率为 (或
【解析】(1)由题意知本题是一个相互独立事件同时发生的概率,从袋中摸球,摸到红球的概率是 ,三次有放回到摸球可以看做是三次独立重复试验,根据概率公式得到结果.(2)三只颜色全相同,则可能抽到红色和黄色两种情况,这两种情况是互斥的,根据做出的每个球被抽到的概率和相互独立事件同时发生的概率和互斥事件的概率,得到结果.(3)根据二问做出的结果,三只颜色不全相同,是三只颜色全部相同的对立事件,用对立事件的概率得到结果,或者是用树状图列出的结果求出比值.
【考点精析】认真审题,首先需要了解互斥事件与对立事件(互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生;而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设向量 =( sinx,sinx), =(cosx,sinx),x∈[0, ]
(1)若| |=| |,求x的值;
(2)设函数f(x)= ,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

参加书法社团

未参加书法社团

参加演讲社团

8

5

未参加演讲社团

2

30


(1)从该班随机选1名同学,求该同学至少参加一个社团的概率;
(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1 , A2 , A3 , A4 , A5 , 3名女同学B1 , B2 , B3 . 现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于任意的x∈[﹣1,0],关于x的不等式3x2+2ax+b≤0恒成立,则a2+b2﹣2的最小值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A(0,2)是圆x2y216内的定点,BC是这个圆上的两个动点,若BACA,求BC中点M的轨迹方程,并说明它的轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形ABCD中, ,点分别在边上,且 于点.现将沿折起,使得平面平面,得到图2.

(Ⅰ)在图2中,求证:

(Ⅱ)若点是线段上的一动点,问点什么位置时,二面角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中.

(1)求函数的极大值点;

(2)当时,若在上至少存在一点,使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知平面直角坐标系,以为极点, 轴的非负半轴为极轴建立极坐标系, 点的极坐标为,曲线的参数方程为为参数).

(1)写出点的直角坐标及曲线的直角坐标方程;

(2)若为曲线上的动点,求的中点到直线 的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线在第一象限内的点到焦点的距离为

1,过点, 的直线与抛物线相交于另一点,求的值

2)若直线与抛物线相交于两点,与圆相交于两点, 为坐标原点, ,试问:是否存在实数,使得的长为定值?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案