精英家教网 > 高中数学 > 题目详情
10.如图阴影部分的面积是(  )
A.e+$\frac{1}{e}$B.e+$\frac{1}{e}$-1C.e+$\frac{1}{e}$-2D.e-$\frac{1}{e}$

分析 利用定积分可得阴影部分的面积.

解答 解:利用定积分可得阴影部分的面积S=${∫}_{0}^{1}({e}^{x}-{e}^{-x})dx$=(ex+e-x)${|}_{0}^{1}$=e+$\frac{1}{e}$-2.
故选:C.

点评 本题考查利用定积分求阴影部分的面积,考查导数知识的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在五面体ABC-DEF中,四边形BCFE是平行四边形.
(1)求证:CF∥AD;
(2)判断DF与BC是否平行?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=x3-px2-qx的图象与x轴切于点(1,0),则f(x)的极值为(  )
A.极大值为$\frac{4}{27}$,极小值为0B.极大值为0,极小值为$\frac{4}{27}$
C.极小值为-$\frac{4}{27}$,极大值为0D.极大值为-$\frac{4}{27}$,极小值为0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,E为PD中点.
(1)求证:PB∥平面AEC;
(2)求证:平面PBC⊥平面PAB;
(3)设PA=1,AD=2,三棱锥P-ACD的体积V=$\frac{1}{3}$,求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}是首项为1,公比为q的等比数列.
(Ⅰ)证明:当0<q<1时,{an}是递减数列;
(Ⅱ)若对任意k∈N*,都有ak,ak+2,ak+1成等差数列,求q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=$\frac{1}{x}$,则f′(1)=(  )
A.0B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知正方形ABCD的对角线交于点M,坐标原点不在正方形内部,且$\overrightarrow{OA}$=(0,3),$\overrightarrow{OD}$=(4,0),则向量$\overrightarrow{CM}$的坐标是($-\frac{7}{2},-\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x1是x+lgx=27的解,x2是x+10x=27的解,则x1+x2的值是27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若角α的终边上有一点P(-1,m),且sinαcosα=$\frac{{\sqrt{3}}}{4}$,则m的值为(  )
A.$\sqrt{3}$B.$±\sqrt{3}$C.$-\sqrt{3}$或$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

同步练习册答案