精英家教网 > 高中数学 > 题目详情
关于直线a,b,c以及平面α,β,给出下列命题:(  )
①若a∥α,b∥α,则a∥b
②若a∥α,b⊥α,则a⊥b
③若a?α,b?α,且c⊥a,c⊥b,则c⊥α
④若a⊥α,a∥β,则α⊥β
分析:由线面平行的几何特征,及空间直线的位置关系,可判断①;由线面平行的性质定理,线面垂直的性质,可判断②;根据线面垂直的判定定理,可判断③;由线面平行的性质定理及面面垂直的判定定理,可判断④
解答:解:若a∥α,b∥α,则a与b可能平行,可能相交,也可能异面,故①错误;
若a∥α,则当a?β,α∩β=c时,a∥c,又由b⊥α,c?α,可得b⊥c,则a⊥b,故②正确;
若a?α,b?α,a∥b,c⊥a,c⊥b时,c⊥α不一定成立,故③错误;
④若a∥β,a?γ,β∩γ=c时,a∥c,又由a⊥α,可得c⊥a,则α⊥β,故④正确;
故选:C
点评:本题以命题的真假判断为载体,考查了空间直线和平面的位置关系,熟练掌握空间线面关系的判定定理,性质定理和几何特征是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)+f(x)=0,且函数f(x+1)为奇函数,对于下列命题:
①函数f(x)是以T=2为周期的函数;
②函数f(x)的图象关于点(1,0)对称;
③函数f(x)的图象关于直线x=2对称;
④函数f(x)的最大值为f(2);
⑤f(2011)=0.
其中正确结论的序号为(  )
A、①③⑤B、②③⑤C、②③④D、①④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(考生只能从A,B,C中选做一题,多做以所做第一题记分)
A.(不等式选做题)
已知a∈R,若关于x的方程x2+4x+|a-1|+|a+1|=0无实根,则a的取值范围是
(-∞,-2)∪(2,+∞)
(-∞,-2)∪(2,+∞)

B.(几何证明选做题)
如图,CD是圆O的切线,切点为C,点A、B在圆O上,BC=1,∠BCD=30°,则圆O的面积为
π
π

C.(坐标系与参数方程选做题)
在极坐标系中,若过点(1,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宿迁一模)【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,已知AB,CD是圆O的两条弦,且AB是线段CD的 垂直平分线,若AB=6,CD=2
5
,求线段AC的长度.
B.选修4-2:矩阵与变换(本小题满分10分)
已知矩阵M=
21
1a
的一个特征值是3,求直线x-2y-3=0在M作用下的新直线方程.
C.选修4-4:坐标系与参数方程(本小题满分10分)
在平面直角坐标系xOy中,已知曲线C的参数方程是
x=cosα
y=sinα+1
(α是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲(本小题满分10分)
已知关于x的不等式|ax-1|+|ax-a|≥1的解集为R,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+?)(ω>0,-
π
2
<?<
π
2
)
,给出以下四个论断:
①它的图象关于直线x=
π
12
对称;
②它的图象关于点(
π
3
,0)对称;
③它的最小正周期是π;
④在区间[-
π
6
,0
]上是增函数.
以其中两个论断作为条件,余下论断作为结论,一个正确的命题:
条件
3
,结论
A、①②⇒③④
B、③④⇒①②
C、②④⇒①③
D、①③⇒②④

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线P:x2=2py上一点Q(m,2)到抛物线P的焦点的距离为3,A、B、C、D为抛物线的四个不同的点,其中A、D关于y轴对称,D(x0,y0),B(x1,y1),C(x2,y2),-x0<x1<x0<x2,直线BC平行于抛物线P的以D为切点的切线.
(1)求p的值;
(2)证明:∠BAC的角平分线在直线AD上;
(3)D到直线AB、AC的距离分别为m、n,且m+n=
2
|AD|
,△ABC的面积为48,求直线BC的方程.

查看答案和解析>>

同步练习册答案