精英家教网 > 高中数学 > 题目详情

【题目】春节来临之际,某超市为了确定此次春节年货的进货方案,统计去年春节前后50天年货的日销售量(单位:kg),得到如图所示的频率分布直方图.

(1)求这50天超市日销售量的平均数;(视频率为概率,以各组区间的中点值代表该组的值)

(2)先从日销售在内的天数中,按分层抽样随机抽取4天进行比较研究,再从中选2天,求这2天的日销售量都在内的概率.

【答案】1168.6;(2

【解析】

1)利用频率和=1,可求得a;利用平均数的计算公式可求得答案;

2)列举出所有的等可能情况,利用古典概型的概率公式求解.

1)由题意得,所以

所以

2)从日销售量在内的天数中,按分层抽样随机抽取4天,则日销售量都在内的有1天,可记为,在内的有2天,可记为,在内的有1天,可记为.

从中选出2天,有,共6种选法,其中2天的日销售量都在内的有,共1种选法.则所求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为直角梯形,,平面平面是以为斜边的等腰直角三角形,上一点,且.

1)证明:直线平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.

若在图④中随机选取-点,则此点取自阴影部分的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电器专卖店销售某种型号的空调,记第天()的日销售量为(单位;台).函数图象中的点分别在两条直线上,如图,该两直线交点的横坐标为,已知时,函数

1)当时,求函数的解析式;

2)求的值及该店前天此型号空调的销售总量;

3)按照经验判断,当该店此型号空调的销售总量达到或超过台,且日销售量仍持续增加时,该型号空调开始旺销,问该店此型号空调销售到第几天时,才可被认为开始旺销?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项大于0的等差数列的公差,且

1)求数列的通项公式;

2)若数列满足:,其中

①求数列的通项

②是否存在实数,使得数列为等比数列?若存在,求出的值,若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的圆锥的体积为,圆的直径,点C的中点,点D是母线PA的中点.

(1)求该圆锥的侧面积;

(2)求异面直线PBCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线的参数方程为(其中为参数),以原点为极点,轴的正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)射线与曲线分别交于点(且点均异于原点),当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某传动装置由两个陀螺组成,陀螺之间没有滑动,每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的,且的轴相互垂直,它们相接触的直线与的轴所成角,若陀螺中圆锥的底面半径为);

1)求陀螺的体积;

2)当陀螺转动一圈时,陀螺中圆锥底面圆周上一点转动到点,求之间的距离;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在折线中,,,分别是的中点,若折线上满足条件的点至少有个,则实数的取值范围是___________.

查看答案和解析>>

同步练习册答案