精英家教网 > 高中数学 > 题目详情
17.已知M(x0,y0)是双曲线C:$\frac{{x}^{2}}{2}$-y2=1上的一点,F1、F2是C上的两个焦点,若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$<0,则y0的取值范围是-$\frac{\sqrt{3}}{3}$<y0<$\frac{\sqrt{3}}{3}$.

分析 利用向量的数量积公式,结合双曲线的方程,即可求出y0的取值范围.

解答 解:由题意,$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=(-$\sqrt{3}$-x0,-y0)•($\sqrt{3}$-x0,-y0)=x02-3+y02=3y02-1<0,
∴-$\frac{\sqrt{3}}{3}$<y0<$\frac{\sqrt{3}}{3}$.
故答案为:-$\frac{\sqrt{3}}{3}$<y0<$\frac{\sqrt{3}}{3}$.

点评 本题考查向量的数量积公式、双曲线的方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为平行四边形,∠ADB=90°,AB=2AD.
(Ⅰ)求证:PA⊥BD;
(Ⅱ)若PD=AD=1,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.抛物线x2=4y上的点P到焦点的距离是4,则点P的纵坐标为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.经过直线3x-y=2和2x+y=3交点,且与y=2x平行的直线方程y=2x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若向量$\overrightarrow{a}$=(2,3)与向量$\overrightarrow{b}$=(-4,y)共线,则y=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线kx-y-k+1=0截圆x2+y2=4所得两部分弧长之比为3:1,则k=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对称轴的截口BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上,由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC⊥F1F2,|F1B|=3m,|F1F2|=4cm,试建立适当的坐标系,求截口BAC所在椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}中,an=n(n-1),则56是这个数列的(  )
A.第9项B.第8项C.第7项D.第6项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知不等式|x-1|≤2与不等式ax2+bx-2≤0 有相同的解集,求实数a、b的值.

查看答案和解析>>

同步练习册答案