精英家教网 > 高中数学 > 题目详情
6.已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(2,3),若$\overrightarrow{a}$+$\overrightarrow{c}$=2$\overrightarrow{b}$,O是坐标原点.
(1)求$\overrightarrow{c}$;
(2)若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,求点A,B的坐标;
(3)在(2)的条件下,求△AOB的面积.

分析 分别根据向量的坐标运算法则计算即可.

解答 解:(1)$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(2,3),$\overrightarrow{a}$+$\overrightarrow{c}$=2$\overrightarrow{b}$,
∴$\overrightarrow{c}$=2$\overrightarrow{b}$-$\overrightarrow{a}$=2(2,3)-(2,1)=(2,5).
(2)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(2,3),
∴点A(2,1),B(2,3);
(3)S△AOB=$\frac{1}{2}$×2×(3-1)=2.

点评 本题考查了向量的坐标运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.集合M是满足下列性质的函敖f(x)的全体;存在非零常数T,对任意X∈R,有f(x+T)=Tf(x)成立,已知f(x)=x,g(x)=a,(a>0且a≠1)则(  )
A.f(x)∈M且g(x)∈MB.f(x)∉M,g(x)∈MC.f(x)∈M,g(x)∉MD.f(x)∉M且g(x)∉M

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x∈R,“x=1”是:“x-1=$\sqrt{x-1}$”的(  )
A.必要不充分条件B.充分不必要条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的内角A、B、C所对应的边分别是a、b、c,$\overrightarrow{p}$=(asin2C,c),$\overrightarrow{q}$=($\frac{1}{sin(A+B)}$,1),且$\overrightarrow{p}$•$\overrightarrow{q}$=2b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.甲、乙、丙、丁4人任意排成一行,求甲和乙相邻的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设向量$\overrightarrow{a}$=(-3,2),$\overrightarrow{b}$=(cosα,-$\frac{1}{3}$)(0°<α<180°),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则角α为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.f(x)=x|x-a|(a<0)在(m,n)上有最大、小值,则m,n的取值范围$\frac{1+\sqrt{3}}{2}$a≤m<a,$\frac{a}{2}$<n≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某人向正东方向走2$\sqrt{3}$千米后,再沿北偏西60°方向走了3千米,结果他离出发点恰好x千米,那么x的值为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{21-6\sqrt{3}}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}中,a1=$\frac{3}{2}$,2an+1=an+n+2
(1)证明数列{an-n}是等比数列;
(2)设bn=2nan,求{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案