分析 (1)设AC和BD交于点O,连PO,则PO∥BD1,由此能证明直线BD1∥平面PAC.
(2)推导出AC⊥BD,DD1⊥AC,由此能证明平面PAC⊥平面BDD1.
解答 证明:(1)设AC和BD交于点O,连PO,
由P,O分别是DD1,BD的中点,故PO∥BD1,
因为PO?平面PAC,BD1?平面PAC,
所以直线BD1∥平面PAC
(2)长方体ABCD-A1B1C1D1中,AB=AD=1,
底面ABCD是正方形,则AC⊥BD
又DD1⊥面ABCD,则DD1⊥AC,
所以AC⊥面BDD1,则平面PAC⊥平面BDD1.
点评 本题主要考查了线面平行和线面垂直的判定定理的应用.考查了学生对基本定理的记忆和灵活运用.
科目:高中数学 来源: 题型:选择题
A. | 0.6 | B. | 0.48 | C. | 0.75 | D. | 0.56 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{17}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 直线a,b,c,若a∥b,b∥c,则a∥c.类推出:向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,则$\overrightarrow a$∥$\overrightarrow c$ | |
B. | 同一平面内,直线a,b,c,若a⊥c,b⊥c,则a∥b.类推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b | |
C. | 若a,b∈R,则a-b>0⇒a>b.类推出:若a,b∈C,则a-b>0⇒a>b | |
D. | 由向量加法的几何意义,可以类比得到复数加法的几何意义. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com