精英家教网 > 高中数学 > 题目详情

已知椭圆数学公式经过点M(-2,-1),离心率为数学公式.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.
(I)求椭圆C的方程;
(II)∠PMQ能否为直角?证明你的结论;
(III)证明:直线PQ的斜率为定值,并求这个定值.

(Ⅰ)解:由题设,得,①且=,②
由①、②解得a=6,b=3,
∴椭圆C的方程为.…(4分)
(Ⅱ)解:设直线的倾斜角为α,β,则α+β=180°,α=β+∠PMQ
若∠PMQ=90°,则β=45°,α=135°
∴直线的斜率分别为1,-1
∴方程分别为y=x+1,y=-x-3
代入椭圆方程可得:3x2+4x-4=0,x2+4x+4=0
故可知y=-x-3与椭圆有且只有一个交点
所以∠PMQ不能直角;
(III)证明:记P(x1,y1)、Q(x2,y2).
设直线MP的方程为y+1=k(x+2),与椭圆C的方程联立,得(1+2k2)x2+(8k2-4k)x+8k2-8k-4=0,
则-2,x1是该方程的两根,∴-2x1=,∴x1=
设直线MQ的方程为y+1=-k(x+2),同理得x2=.…(8分)
因y1+1=k(x1+2),y2+1=-k(x2+2),
故kPQ=====1,
因此直线PQ的斜率为定值.…(12分)
分析:(Ⅰ)根据椭圆经过点M(-2,-1),离心率为,建立方程可求a,b的值,从而可得椭圆的方程;
(Ⅱ)设直线的倾斜角为α,β,则α+β=180°,α=β+∠PMQ,若∠PMQ=90°,则β=45°,α=135°,求出直线的方程与椭圆方程联立,验证即可得到结论;
(III)记P(x1,y1)、Q(x2,y2),直线MP的方程与椭圆C的方程联立,求出x1,x2的值,利用斜率公式即可求得结论.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查直线斜率的计算,确定椭圆方程,联立方程是关键.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年河北省唐山市高三上学期摸底考试理科数学试卷 题型:解答题

(本小题满分12分)

已知椭圆经过点M(-2,-1),离心率为。过点M作倾斜角

 

互补的两条直线分别与椭圆C交于异于M的另外两点P、Q。

(I)求椭圆C的方程;

(II)能否为直角?证明你的结论;

(III)证明:直线PQ的斜率为定值,并求这个定值。

 

查看答案和解析>>

科目:高中数学 来源:2013届福建省高二上学期期末考试理科数学 题型:解答题

(本小题满分14分)已知椭圆经过点M(2,1),O为坐标原点,平行于OM的直线ly轴上的截距为mm≠0) 

(1)当 时,判断直线l与椭圆的位置关系;

(2)当时,P为椭圆上的动点,求点P到直线l距离的最小值;

(3)如图,当l交椭圆于A、B两个不同点时,求证:

直线MA、MB与x轴始终围成一个等腰三角形 

 

 

 

查看答案和解析>>

科目:高中数学 来源:0119 期中题 题型:解答题

已知椭圆经过点M(2,1),O为坐标原点,平行于OM的直线l在y轴上的截距为m(m≠0),
(1)当m=3时,判断直线l与椭圆的位置关系(写出结论,不需证明);
(2)当m=3时,P为椭圆上的动点,求点P到直线l距离的最小值;
(3)如图,当l交椭圆于A、B两个不同点时,求证直线MA、MB与x轴始终围成一个等腰三角形。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省广州市实验中学高二(上)期中数学试卷(解析版) 题型:解答题

已知椭圆经过点M(2,1),O为坐标原点,平行于OM的直线l在y轴上的截距为m(m≠0).
(1)当m=3时,判断直线l与椭圆的位置关系(写出结论,不需证明);
(2)当m=3时,P为椭圆上的动点,求点P到直线l距离的最小值;
(3)如图,当l交椭圆于A、B两个不同点时,求证直线MA、MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源:2012年江西省吉安市高考数学二模试卷(理科)(解析版) 题型:解答题

已知椭圆经过点M(-2,-1),离心率为.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.
(I)求椭圆C的方程;
(II)∠PMQ能否为直角?证明你的结论;
(III)证明:直线PQ的斜率为定值,并求这个定值.

查看答案和解析>>

同步练习册答案