精英家教网 > 高中数学 > 题目详情
椭圆与渐近线为x±2y=0的双曲线有相同的焦点F1,F2,P为它们的一个公共点,且∠F1PF2=90°,则椭圆的离心率为( )
A.
B.
C.
D.
【答案】分析:由渐近线为x±2y=0,得出双曲线中的实轴长与半焦距的关系a2=,再结合椭圆和双曲线的定义,列出关于PF1,PF2,F1F2的关系式,解出c的值,代入离心率公式计算.
解答:解:设F1F2=2c,在双曲线中,=,a2+b2=c2,得a2=.不妨设p在第一象限,则由椭圆的定义得PF1+PF2=,由双曲线的定义得PF1-PF2=2a=又∠F1PF2=90°∴PF12+PF22=4c2∴48+=8c2,解c=,∴e===
故选C
点评:本题是椭圆和双曲线结合的好题.要充分认识到PF1,PF2,F1F2在两曲线中的沟通作用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆
x2
12
+
y2
b2
=1(0<b<2
3
)
与渐近线为x±2y=0的双曲线有相同的焦点F1,F2,P为它们的一个公共点,且∠F1PF2=90°,则椭圆的离心率为(  )
A、
6
6
B、
21
6
C、
30
6
D、
15
6

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

椭圆数学公式与渐近线为x±2y=0的双曲线有相同的焦点F1,F2,P为它们的一个公共点,且∠F1PF2=90°,则椭圆的离心率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
12
+
y2
b2
=1(0<b<2
3
)
与渐近线为x±2y=0的双曲线有相同的焦点F1,F2,P为它们的一个公共点,且∠F1PF2=90°,则椭圆的离心率为(  )
A.
6
6
B.
21
6
C.
30
6
D.
15
6

查看答案和解析>>

科目:高中数学 来源:2010年江西省吉安市高考数学二模试卷(理科)(解析版) 题型:解答题

已知双曲线C1的渐近线方程是y=±x,且它的一条准线与渐近线y=x及x轴围成的三角形的周长是.以C1的两个顶点为焦点,以C1的焦点为顶点的椭圆记为C2
(1)求C2的方程;
(2)已知斜率为的直线l经过定点P(m,0)(m>0)并与椭圆C2交于不同的两点A、B,若对于椭圆C2上任意一点M,都存在θ∈[0,2π],使得成立.求实数m的值.

查看答案和解析>>

同步练习册答案