精英家教网 > 高中数学 > 题目详情

【题目】已知a,b,c分别为锐角△ABC三个内角A,B,C的对边,且(a+b)(sinA﹣sinB)=(c﹣b)sinC (Ⅰ)求∠A的大小;
(Ⅱ)若f(x)= sin cos +cos2 ,求f(B)的取值范围.

【答案】解:(I)∵(a+b)(sinA﹣sinB)=(c﹣b)sinC,由正弦定理可得:(a+b)(a﹣b)=(c﹣b)c,化为b2+c2﹣a2=bc. 由余弦定理可得:cosA= = =
∵A∈(0,π),∴A=
(II)f(x)= = sinx+ = +
在锐角△ABC中, <B ,∴ <B+

∴f(B)的取值范围是
【解析】(I)由(a+b)(sinA﹣sinB)=(c﹣b)sinC,由正弦定理可得:(a+b)(a﹣b)=(c﹣b)c,化为b2+c2﹣a2=bc.再利用余弦定理可得:cosA.(II)f(x)= sinx+ = + ,在锐角△ABC中, <B ,可得 <B+ ,即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=n2+2n,(n∈N*),求:
(1)数列{an}的通项公式an
(2)若bn=an3n , 求数列{bn}的前n项和 Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若 ,讨论函数 的单调性;
(2)曲线 与直线 交于 两点,其中 ,若直线 斜率为 ,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若同时满足以下条件:

在D上单调递减或单调递增;

存在区间,使 上的值域是,那么称为闭函数.

(1)求闭函数符合条件的区间

(2)判断函数是不是闭函数?若是请找出区间;若不是请说明理由;

(3)若是闭函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sinωx(>0)的图象向右平移 个单位得到函数y=g(x)的图象,并且函数g(x)在区间[ ]上单调递增,在区间[ ]上单调递减,则实数ω的值为(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+2x-6。

(1)证明:函数f(x)在其定义域上是增函数;

(2)证明:函数f(x)有且只有一个零点;

(3)求这个零点所在的一个区间,使这个区间的长度不超过

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h(x),其中,x是新样式单车的月产量(单位:件),利润=总收益﹣总成本.

(1)试将自行车厂的利润y元表示为月产量x的函数;

(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1+x),g(x)=loga(1﹣x),(a>1).

(1)求函数h(x)=f(x)﹣g(x)的定义域;

(2)求使f(x)﹣g(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C: + =1(a>b>0)的离心率e= ,且点P(2,1)在椭圆C上. (Ⅰ)求椭圆C的方程;
(Ⅱ)若点A、B都在椭圆C上,且AB中点M在线段OP(不包括端点)上.求△AOB面积的最大值.

查看答案和解析>>

同步练习册答案