精英家教网 > 高中数学 > 题目详情
17.说明过A(2,0)平行于y轴的直线与方程|x|=2的关系.
①直线上的点的坐标是否都满足方程|x|=2?
②满足方程|x|=2的点是否都在直线上?

分析 由直线和方程的对应关系可得.

解答 解:①由题意可得直线上的点的坐标都满足方程|x|=2;
②满足方程|x|=2的点也都在直线上.

点评 本题考查直线的一般式方程,涉及直线和方程的对应关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1,F2,A为椭圆上一点,$\overrightarrow{A{F}_{1}}$•$\overrightarrow{A{F}_{2}}$=0,AF2与y轴交与点M,若   $\overrightarrow{{F}_{2}M}$=$\frac{5}{4}$$\overrightarrow{MA}$,则椭圆离心率的值为$\frac{\sqrt{10}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.绝对值不等式|x+1|<0的解集∅.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图△ABC中,sin∠BAC=$\frac{2\sqrt{2}}{3}$,AB=3$\sqrt{2}$,又己知BC边上有一点D,使∠DAC=90°,BD=$\sqrt{3}$.
(I)求AD的长;
(Ⅱ)求cosC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线l1,l2在x轴上的截距都是m,在y轴上的截距都是n,则11与l2(  )
A.平行B.重合C.平行或重合D.相交或重合

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线l1经过两点(-1,2),(-1,4),直线l2经过两点(0,1),(x-2,6),且l1∥l2,则x=(  )
A.2B.-2C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,在四边形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′BCD,使得平面A′BD⊥平面BDC,给出下列四个结论,其中正确的有(  )
A.A′B⊥CD
B.四面体A′BCD的体积为$\frac{1}{2}$
C.A′C与BD所成的角为60°
D.四面体A′BCD的外接球的表面积为$\frac{7π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若loga$\frac{3}{5}$<1(a>0且a≠1),则实数a的取值范围是(0,$\frac{3}{5}$)∪(1,+∞).

查看答案和解析>>

同步练习册答案