【题目】对于数列、,把和叫做数列与的前项泛和,记作为.已知数列的前项和为,且.
(1)求数列的通项公式;
(2)数列与数列的前项的泛和为,且恒成立,求实数的取值范围;
(3)从数列的前项中,任取项从小到大依次排列,得到数列、、、;再将余下的项从大到小依次排列,得到数列、、、.求数列与数列的前项的泛和
【答案】(1);(2);(3).
【解析】
(1)当时,求得,当时,可得,由此判断数列为等比数列,进而求得通项;
(2)易知,中偶数项为,奇数项为(为奇数),则可分及两种情况,可得与的不等关系,再利用数列的性质求解;
(3)解决该小问的关键是分析出满足,进而问题转化为求数列的前项和,再利用错位相减法即可求解.
(1)当时,;
当时,由①,可得②,
①②得,,数列是以为首项,为公比的等比数列,;
(2)当为偶数时,即当时,
,
故对任意的,都成立,即对任意的恒成立,
易知,当时,,故;
当为奇数时,即当时,
,
故对任意的,恒成立,即对任意的恒成立.
易知,当时,,故.
综上所述,实数的取值范围是;
(3)易知,数列的前项中,奇偶项各一半,且奇数项为负,偶数项为正,
设数列中任取了个偶数项,个奇数项,则数列中必然是个奇数项,个偶数项,
又数列由小到大排列,数列由大到小排列,则必有,即.
,③
由③得,,④
由③④得,,
因此,.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为(为参数).以原点为极点,x轴的非负半轴为极轴,建立极坐标系.
(1)求曲线C的极坐标方程;
(2)直线(t为参数)与曲线C交于A,B两点,求最大时,直线l的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为抛物线的焦点,过的动直线交抛物线于,两点.当直线与轴垂直时,.
(1)求抛物线的方程;
(2)设直线的斜率为1且与抛物线的准线相交于点,抛物线上存在点使得直线,,的斜率成等差数列,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某中学学生对《中华人民共和国交通安全法》的了解情况,调查部门在该校进行了一次问卷调查(共12道题),从该校学生中随机抽取40人,统计了每人答对的题数,将统计结果分成,,,,,六组,得到如下频率分布直方图.
(1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);
(2)若从答对题数在内的学生中随机抽取2人,求恰有1人答对题数在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:),经统计,其高度均在区间内,将其按分成6组,制成如图所示的频率分布直方图.其中高度为及以上的树苗为优质树苗.
试验区 | 试验区 | 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
(1)求图中的值,并估计这批树苗高度的中位数和平均数(同一组数据用该组区间的中点值作代表);
(2)已知所抽取的这120棵树苗来自于,两个试验区,部分数据如上列联表:将列联表补充完整,并判断是否有的把握认为优质树苗与,两个试验区有关系,并说明理由.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某客户考察了一款热销的净水器,使用寿命为十年,过滤由核心部件滤芯来实现.在使用过程中,滤芯需要不定期更换,其中滤芯每个200元.如图是根据100台该款净水器在十年使用期内更换的滤芯的件数制成的柱状图.(以100台净水器更换滤芯的频率代替1台净水器更换滤芯发生的概率)
(1)估计一台净水器在使用期内更换滤芯的件数的众数和中位数.
(2)估计一台净水器在使用期内更换滤芯的件数大于10的概率.
(3)已知上述100台净水器在购机的同时购买滤芯享受5折优惠(使用过程中如需再购买无优惠),假设每台净水器在购机的同时购买滤芯10个,这100台净水器在使用期内,更换滤芯的件数记为a,所需费用记为y,补全下表,估计这100台净水器在使用期内购买滤芯所需总费用的平均数.
100台该款净水器在试用期内更换滤芯的件数a | 9 | 10 | 11 | 12 |
频数 | ||||
费用y |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,为等腰直角三角形,,D为AC上一点,将沿BD折起,得到三棱锥,且使得在底面BCD的投影E在线段BC上,连接AE.
(1)证明:;
(2)若,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com