【题目】设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs这s个数中最大的数.(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当n≥m时, >M;或者存在正整数m,使得cm , cm+1 , cm+2 , …是等差数列.
【答案】
(1)
解: a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,
当n=1时,c1=max{b1﹣a1}=max{0}=0,
当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,
当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,
下面证明:对n∈N*,且n≥2,都有cn=b1﹣na1,
当n∈N*,且2≤k≤n时,
则(bk﹣nak)﹣(b1﹣na1),
=[(2k﹣1)﹣nk]﹣1+n,
=(2k﹣2)﹣n(k﹣1),
=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,
则(bk﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak,
因此,对n∈N*,且n≥2,cn=b1﹣na1=1﹣n,
cn+1﹣cn=﹣1,
∴c2﹣c1=﹣1,
∴cn+1﹣cn=﹣1对n∈N*均成立,
∴数列{cn}是等差数列;
(2)
证明:设数列{an}和{bn}的公差分别为d1,d2,下面考虑的cn取值,
由b1﹣a1n,b2﹣a2n,…,bn﹣ann,
考虑其中任意bi﹣ain,(i∈N*,且1≤i≤n),
则bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,
=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),
下面分d1=0,d1>0,d1<0三种情况进行讨论,
①若d1=0,则bi﹣ain═(b1﹣a1n)+(i﹣1)d2,
当若d2≤0,则(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)d2≤0,
则对于给定的正整数n而言,cn=b1﹣a1n,此时cn+1﹣cn=﹣a1,
∴数列{cn}是等差数列;
当d1>0,(bi﹣ain)﹣(bn﹣ann)=(i﹣1)d2≤0,
则对于给定的正整数n而言,cn=bn﹣ann=bn﹣a1n,
此时cn+1﹣cn=d2﹣a1,
∴数列{cn}是等差数列;
此时取m=1,则c1,c2,…,是等差数列,命题成立;
②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,
故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,
则当n≥m时,(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),
因此当n≥m时,cn=b1﹣a1n,
此时cn+1﹣cn=﹣a1,故数列{cn}从第m项开始为等差数列,命题成立;
③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,
故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,
则当n≥s时,(bi﹣ain)﹣(bn﹣ann)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),
因此,当n≥s时,cn=bn﹣ann,
此时= =﹣an+ ,
=﹣d2n+(d1﹣a1+d2)+ ,
令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,
下面证明: =An+B+ 对任意正整数M,存在正整数m,使得n≥m, >M,
若C≥0,取m=[ +1],[x]表示不大于x的最大整数,
当n≥m时, ≥An+B≥Am+B=A[ +1]+B>A +B=M,
此时命题成立;
若C<0,取m=[ ]+1,
当n≥m时,
≥An+B+ ≥Am+B+C>A +B+C ≥M﹣C﹣B+B+C=M,
此时命题成立,
因此对任意正数M,存在正整数m,使得当n≥m时, >M;
综合以上三种情况,命题得证.
【解析】(1.)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1 , c2 , c3;由(bk﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak , 则cn=b1﹣na1=1﹣n,cn+1﹣cn=﹣1对n∈N*均成立;
(2.)由bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得cm , cm+1 , cm+2 , …是等差数列;设 =An+B+ 对任意正整数M,存在正整数m,使得n≥m, >M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时, >M.
【考点精析】根据题目的已知条件,利用等差关系的确定的相关知识可以得到问题的答案,需要掌握如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即-=d ,(n≥2,n∈N)那么这个数列就叫做等差数列.
科目:高中数学 来源: 题型:
【题目】某旅游爱好者计划从3个亚洲国家A1 , A2 , A3和3个欧洲国家B1 , B2 , B3中选择2个国家去旅游.
(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=excosx﹣x.(13分)
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0, ]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2013年1月,北京经历了59年来雾霾天气最多的一个月.据气象局统计,北京市2013年1月1日至1月30日这30天里有26天出现雾霾天气,《环境空气质量指数(AQI)技术规定(试行)》如表1:
表1 空气质量指数AQI分组表
AQI指数M | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
级别 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ |
状况 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
表2是某气象观测点记录的连续4天里AQI指数M与当天的空气水平可见度y(km)的情况,表3是某气象观测点记录的北京市2013年1月1日至1月30日的AQI指数频数分布表.
表2 AQI指数M与当天的空气水平可见度y(km)的情况
AQI指数M | 900 | 700 | 300 | 100 |
空气水平可见度y(km) | 0.5 | 3.5 | 6.5 | 9.5 |
表3 北京市2013年1月1日至1月30日AQI指数频数分布表
AQI指数M | [0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
频数 | 3 | 6 | 12 | 6 | 3 |
(1)设x=,根据表2的数据,求出y关于x的线性回归方程.
(参考公式:,.)
(2)小王在北京开了一家洗车店,经小王统计:当AQI指数低于200时,洗车店平均每天亏损约2000元;当AQI指数在200至400时,洗车店平均每天收入约4000元;当AQI指数不低于400时,洗车店平均每天收入约7000元.
①估计小王的洗车店在2013年1月份平均每天的收入;
②从AQI指数在[0,200)和[800,1000]内的这6天中抽取2天,求这2天的收入之和不低于5000元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆的离心率为,过椭圆右焦点作两条互相垂直的弦与.当直线斜率为0时,.
(1)求椭圆的方程;
(2)求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com