精英家教网 > 高中数学 > 题目详情

【题目】设函数是定义在上的增函数,实数使得对于任意都成立,则实数的取值范围是(

A.B.C.D.

【答案】A

【解析】

由条件得1axx22a对于x[01]恒成立,令gx)=x2+axa+1,只需gx)在[01]上的最小值大于0即可,分类讨论,求最值即可求出实数a的取值范围.

解:法一:由条件得1axx22a对于x[01]恒成立

gx)=x2+axa+1,只需gx)在[01]上的最小值大于0即可.

gx)=x2+axa+1=(x2a+1

0,即a0时,gxming0)=1a0,∴a1,故0a1

01,即﹣2a0时,gxminga+10,∴﹣22a<﹣2+2,故﹣2a0

1,即a<﹣2时,gxming1)=20,满足,故a<﹣2

综上的取值范围,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】高三某班有60名学生(其中女生有20名),三好学生占,而且三好学生中女生占一半,现在从该班任选一名学生参加座谈会,则在已知没有选上女生的条件下,选上的是三好学生的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,设底面ABCD是边长为1的正方形,PA⊥面ABCD.

(1)求证:PC⊥BD;
(2)过BD且与直线PC垂直的平面与PC交于点E,当三棱锥E﹣BCD的体积最大时,求二面角E﹣BD﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的且以2为周期的偶函数,当0≤x≤1时,f(x)=x2 , 如果直线y=x+a与曲线y=f(x)恰有两个不同的交点,则实数a的值为(
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

平面直角坐标系xOy中,曲线C.直线l经过点Pm0),且倾斜角为O为极点,以x轴正半轴为极轴,建立极坐标系.

)写出曲线C的极坐标方程与直线l的参数方程;

)若直线l与曲线C相交于AB两点,且|PA·PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,直线交椭圆两点.

(1)求椭圆的焦点坐标及长轴长;

(2)求以线段为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且.若对任意的,都有.

1)判断函数的单调性,并说明理由;

2)若,求实数的取值范围;.

3)若不等式对任意都恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为二次函数,且f(x-1)+f(x)=2x2+4.

(1)求f(x)的解析式;

(2)当x∈[t,t+2],t∈R时,求函数f(x)的最小值(用t表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过市场调查,超市中的某种小商品在过去的近40天的日销售量(单位:件)与价格(单位:元)为时间(单位:天)的函数,且日销售量近似满足,价格近似满足

(1)写出该商品的日销售额(单位:元)与时间)的函数解析式并用分段函数形式表示该解析式(日销售额=销售量商品价格);

(2)求该种商品的日销售额的最大值和最小值.

查看答案和解析>>

同步练习册答案