(1)终边落在x轴非正半轴上角的集合;
(2)终边落在y轴非正半轴上角的集合;
(3)终边落在坐标轴上角的集合;
(4)终边落在第四象限的角的集合.
解:(1)S={α|α=k·360°+180°,k∈Z}或S={α|α=k·360°-180°,k∈Z}.
(2)S={α|α=k·360°+270°,k∈Z}或S={α|α=k·360°-90°,k∈Z}.
(3)因终边在x轴上的角为α=k·180°,k∈Z,终边在y轴上的角为α=k·180°+90°,k∈Z,∴终边在坐标轴上的角的集合为S={α|α=k·180°,k∈Z}∪{α|α=k·180°+90°,k∈Z}={α|α=n·90°,n∈Z}.(4)S={α|α=k·360°-90°<α<k·360°,k∈Z}或S={α|α=k·360°+270°<α<k·360°+360°,k∈Z}.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2008年高考预测卷数学科(一)新课标 题型:044
已知函数y=f(x)满足:;
(1)分别写出x∈[0,1)时y=f(x)的解析式f1(x)和x∈[1,2)时y=f(x)的解析式f2(x);并猜想x∈[n,n+1),n≥-1,n∈Z时y=f(x)的解析式fn+1(x)(用x和n表示)(不必证明)
(2)当(n≥-1,n∈Z)时,y=fn+1(x)x∈[n,n+1),n≥-1,n∈Z的图象上有点列An+1(x,f(x))和点列Bn+1(n+1,f(n+1)),线段An+1Bn+2与线段Bn+1+An+2的交点Cn+1,求点Cn+1的坐标(an+1(x),bn+1(x));
(3)在前面(1)(2)的基础上,请你提出一个点列Cn+1(an+1(x),bn+1(x))的问题,并进行研究,并写下你研究的过程
查看答案和解析>>
科目:高中数学 来源: 题型:
(Ⅰ)分别写出x∈[0,1)时y=f(x)的解析式f1(x)和x∈[1,2)时y=f(x)的解析式f2(x);并猜想x∈[n,n+1),n≥-1,n∈Z时y=f(x)的解析式fn+1(x)(用x和n表示,不必证明);
(Ⅱ)当x=n+(n≥-1,n∈Z)时,y=fn+1(x),x∈[n,n+1),(n≥-1,n∈Z)的图象上有点列An+1(x,f(x))和点列Bn+1(n+1,f(n+1)),线段An+1Bn+2与线段Bn+1An+2的交点Cn+1,求点Cn+1的坐标(an+1(x),bn+1(x));
(Ⅲ)在前面(Ⅰ)(Ⅱ)的基础上,请你提出一个点列Cn+1(an+1(x),bn+1(x))的问题,并进行研究,并写下你研究的过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com