精英家教网 > 高中数学 > 题目详情

如图,为圆柱的母线,是底面圆的直径,分别是的中点,
(1)证明:
(2)证明:
(3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥 内会有被捕的危险,求鱼被捕的概率.

(1)见解析   (2)见解析     (3)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知正三棱柱ABC-A1B1C1的底面边长为8,侧棱长为6,D为AC中点。

(1)求证:直线AB1∥平面C1DB;
(2)求异面直线AB1与BC1所成角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体中,分别是棱
的中点.求证:
(1)直线∥平面
(2)直线⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是平行四边形,,设中点,点在线段上且
(1)求证:平面
(2)设二面角的大小为,若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。
(1)请在线段CE上找到一点F,使得直线BF∥平面ACD,并证明;
(2)求平面BCE与平面ACD所成锐二面角的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
如图1,直角梯形中, 四边形是正方形,,.将正方形沿折起,得到如图2所示的多面体,其中面,中点.
(1) 证明:∥平面
(2) 求三棱锥的体积.
     
图1                     图2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB= 60°,FC⊥平面ABCD,AE⊥BD,CB=" CD=" CF.
(1)求证:BD⊥平面AED;
(2)求二面角F—BD—C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正三棱柱中,,D、E分别是的中点,

(1)求证:面⊥面BCD;
(2)求直线与平面BCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知为平行四边形,,点上,相交于.现将四边形沿折起,使点在平面上的射影恰在直线上.
(1)求证:平面
(2)求折后直线与平面所成角的余弦值.

查看答案和解析>>

同步练习册答案