精英家教网 > 高中数学 > 题目详情
在△ABC中,sin2A≤sin2B+sin2C-sinBsinC,则A的取值范围是( )
A.(0,]
B.[,π)
C.(0,]
D.[,π)
【答案】分析:先利用正弦定理把不等式中正弦的值转化成边,进而代入到余弦定理公式中求得cosA的范围,进而求得A的范围.
解答:解:由正弦定理可知a=2RsinA,b=2RsinB,c=2RsinC
∵sin2A≤sin2B+sin2C-sinBsinC,
∴a2≤b2+c2-bc
∴cosA=
∴A≤
∵A>0
∴A的取值范围是(0,]
故选C
点评:本题主要考查了正弦定理和余弦定理的应用.作为解三角形中常用的两个定理,考生应能熟练记忆.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan
A+B
2
tan
C
2
;④cos
B+C
2
sin
A
2
,其中恒为定值的是(  )
A、②③B、①②C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sin(A-B)+sinC=
3
2
,BC=
3
AC
,则∠B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)在△ABC中,sin(C-A)=1,sinB=
1
3

(Ⅰ)求sinA的值;
(Ⅱ)设AC=
6
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,“sin(A-B)cosB+cos(A-B)sinB≥1”是“△ABC是直角三角形”的(  )
A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案