精英家教网 > 高中数学 > 题目详情

【题目】椭圆 )的离心率为,其左焦点到点的距离为

1)求椭圆的标准方程;

2)若直线 与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.

【答案】1;(2)证明详见解析,.

【解析】试题分析:(1)利用椭圆的离心率和两点间的距离公式可得的值,再利用椭圆的标准方程及其性质求出的值,即可得到椭圆的标准方程;(2)把直线的方程与椭圆的方程联立,可得根与系数的关系,在利用以为直径的圆过椭圆的右顶点,可得,即可得出的关系,即可得出答案.

试题解析:(1)由题:

左焦点到点的距离为:

①②可解得

所求椭圆的方程为

2)设,将代入椭圆方程得

,且

为直径的圆过椭圆右顶点,所以

所以

整理得 都满足

时,直线,恒过定点,不合题意舍去;

时,直线,恒过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右两个焦点分别为,离心率,短轴长为2.

(1)求椭圆的方程;

(2)点为椭圆上的一动点(非长轴端点),的延长线与椭圆交于点, 的延长线与椭圆交于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式x2﹣2ax+a+2≤0的解集为M,若M[1,4],求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,定圆C半径为2,A为圆C上的一个定点,B为圆C上的动点,若点A,B,C不共线,且| | |对任意t∈(0,+∞)恒成立,则 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知AB=2,cosB= (Ⅰ)若AC=2 ,求sinC的值;
(Ⅱ)若点D在边AC上,且AD=2DC,BD= ,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若不等式的解集为,求实数的值;

(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,茎叶图如图:

若将月均课外阅读时间不低于30小时的学生称为“读书迷”.

(1)将频率视为概率,估计该校900名学生中“读书迷”有多少人?

(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.

(i)共有多少种不同的抽取方法?

(ii)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,且 是3a与3b的等比中项,若 + ≥2m2+3m恒成立,则实数m的取值范围是

查看答案和解析>>

同步练习册答案