精英家教网 > 高中数学 > 题目详情
16.已知直线l:x-2y-7=0.求:
(1)过点(2,1)且与l平行的直线l1方程.
(2)过点(2,1)与l垂直的直线l2方程.

分析 (1)由题意设出l1方程为x-2y+m=0,代入点的坐标求出m,则直线方程可求;
(2)由直线垂直的条件求出直线l2的斜率,代入直线方程的点斜式得答案.

解答 解:(1)由题意可设l1方程为x-2y+m=0,则2-2×1+m=0,即m=0.
∴直线l1方程为x-2y=0;
(2)直线l的斜率为$\frac{1}{2}$,
∵直线l2与直线l垂直,∴直线l2的斜率为-2,
又直线l2过点(2,1),
∴直线l2的方程为y-1=-2(x-2),整理得:2x+y+3=0.

点评 本题考查直线的一般式方程与直线平行、垂直的关系,考查了直线方程的点斜式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.进入2014年金秋,新入职的大学生陆续拿到了第一份薪水.某地调查机构就月薪情况调查了1000名新入职大学生,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示月薪在[1000,1500)单位:元).
(Ⅰ)求新入职大学生的月薪在[3000,4000)的频率,并根据频率分布直方图估计出样本数据的中位数;
(Ⅱ)为了分析新入职大学生的月薪与其性别的关系,必须按月薪再从这 1000人中按分层抽样方法抽出100人作进一步分析,已知月薪在[3500,4000)的被抽取出的人中恰有2位女性.若从月薪在[3500,4000)的被抽取出的人随机选出2人填写某项调查问卷,求这2人中至少有一位男性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}为等差数列,a4=9,且a8+a2=22
(Ⅰ)求数列{an}的通项;
(Ⅱ)若点An(an,bn)在函数y=3x的图象上,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.点A(1,0),B(0,$\sqrt{3}$),C(2,$\sqrt{3}$),则△ABC外接圆的圆心到原点的距离为$\frac{\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图程序框图输出的结果为(  )
A.$\frac{5}{11}$B.$\frac{5}{13}$C.$\frac{4}{9}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如果函数f(x)=ax(ax-3a2-1)(a>0且a≠1)在区间(-∞,0]上是减函数,那么实数a的取值范围是0<a≤$\frac{\sqrt{3}}{3}$或a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=4,且△ABC的面积的最大值为$\sqrt{3}$,则此时△ABC的形状为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.△ABC的外接圆的圆心为O,半径为1,若$\overrightarrow{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AO}$,且|$\overrightarrow{OA}$|=|$\overrightarrow{AC}$|,则△ABC的面积为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.2$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若等差数列{an}中,a2+a8=10,则a3+a7=(  )
A.11B.10C.8D.5

查看答案和解析>>

同步练习册答案