精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.
(Ⅰ)若x=1是函数f(x)的一个极值点,求a的值;
(Ⅱ)若函数f(x)在区间(-1,0)上是增数,求a的取值范围.
解:(Ⅰ)a=2; (Ⅱ)a≥-2.  
本试题主要是考查了导数在研究函数中的运用。
(1)根据f(x)=ax3-3x,f¢(x)=3ax2-6x=3x(ax-2),因为x=1是f(x)的一个极值点,∴f¢(1)=0得到参数a的值。
(2)函数f(x)在区间(-1,0)上是增数,说明导函数在给定区间恒大于等于零,既可以运用分离参数的思想求解得到参数的范围。
解:(Ⅰ)f(x)=ax3-3x,f¢(x)=3ax2-6x=3x(ax-2),。。。。。。。。。。。。。。。。。。
x=1是f(x)的一个极值点,∴f¢(1)=0,。。。。。。。。。。。。。。。。。。。。。。。。。 
∴a=2;                                。。。。。。。。。。。。。。。。。。。
(Ⅱ)①当a=0时,f(x)=-3x2在区间(-1,0)上是增函数,∴a=0符合题意;
②当a≠0时,f¢(x)=3ax(x-),由f¢(x)=0,得x=0,x=
a>0时,对任意x∈(-1,0),f¢(x)>0,∴a>0符合题意;。。。。。。。。。。
a<0时,当x∈(,0)时,由f¢(x)>0,得≤-1,∴-2≤a<0符合题意;。。
综上所述,a≥-2.                                              。。。。。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数
(I)证明:是函数在区间上递增的充分而不必要的条件;
(II)若时,满足恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题9分)
求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知函数. 
(1)求函数的单调区间;
(2)设函数.是否存在实数,使得?若存在,求实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是 (  )
A.①、②B.①、③C.③、④D.①、④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
已知函数.
(Ⅰ) 若曲线在点处的切线与曲线有且只有一个公共点,求 的值;
(Ⅱ) 求证:函数存在单调递减区间,并求出单调递减区间的长度 的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(Ⅰ)判断函数的单调性;
(Ⅱ)是否存在实数、使得关于的不等式在(1,)上恒成立,若存在,求出的取值范围,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

、函数是减函数的区间为(  )
A.B.C.D.(0,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数为常数)在定义域上是增函数,则实数的取值范围是                 

查看答案和解析>>

同步练习册答案