精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)解不等式

(2)若函数在区间上存在零点,求实数的取值范围;

3)若函数其中为奇函数, 为偶函数,若不等式对任意恒成立,求实数的取值范围.

【答案】(1)13(2) (3)

【解析】试题分析:

1利用换元法并通过解二次不等式可得22x8可得1x3即为所求.(2分离参数可得有解,设,求出函数在区间上的值域即为所求范围.(3)根据题意求得的解析式,然后通过分离参数,将恒成立问题转化为具体函数的最值问题,求解即可.

试题解析:

1)原不等式即为

t=2x,则不等式化为t﹣t216﹣9t

t2﹣10t+160解得2t8

22x8

1x3

∴原不等式的解集为(13).

2)函数上有零点,

所以上有解,

有解.

∴当时, ;当时,

有解

故实数m的取值范围为

3)由题意得

解得

由题意得

对任意恒成立,

,则

则得对任意的恒成立,

对任意的恒成立,

因为上单调递减,

所以

∴实数的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在圆 上,点在圆 上,则下列说法错误的是

A. 的取值范围为

B. 取值范围为

C. 的取值范围为

D. ,则实数的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,.

(1)求证:平面平面

(2)当时,直线与平面所成的角能否为?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)设函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当函数有最大值且最大值大于时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1(ab0)的离心率为,且短轴长为6.

(1)求椭圆的标准方程;

(2)是否存在斜率为1的直线l,使得l与曲线C相交于AB两点,且以AB为直径的圆恰好经过原点?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线和曲线,以极点为坐标原点,极轴为轴非负半轴建立平面直角坐标系.

(1)求曲线和曲线的直角坐标方程;

(2)若点是曲线上一动点,过点作线段的垂线交曲线于点,求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程为,点,点M为圆上的任意一点,线段的垂直平分线与线段相交于点N.

(1)求点N的轨迹C的方程.

(2)已知点,过点A且斜率为k的直线交轨迹C于两点,以为邻边作平行四边形,是否存在常数k,使得点B在轨迹C上,若存在,求k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个说法:

①命题“,都有”的否定是“,使得”;

②已知,命题“若,则”的逆否命题是真命题;

的必要不充分条件;

④若为函数的零点,则.

其中正确的个数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家电公司销售部门共有200位销售员,每位部门对每位销售员都有1400万元的年度销售任务,已知这200位销售员去年完成销售额都在区间(单位:百万元)内,现将其分成5组,第1组,第2组,第3组,第4组,第5组对应的区间分别为 ,绘制出频率分布直方图.

(1)求的值,并计算完成年度任务的人数;

(2)用分层抽样从这200位销售员中抽取容量为25的样本,求这5组分别应抽取的人数;

(3)现从(2)中完成年度任务的销售员中随机选取2位,奖励海南三亚三日游,求获得此奖励的2位销售员在同一组的概率.

查看答案和解析>>

同步练习册答案