精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1 (t为参数),C2 (θ为参数).
(1)化C1 , C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为t= ,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.

【答案】
(1)解:曲线C1 (t为参数),化为(x+4)2+(y﹣3)2=1,

∴C1为圆心是(﹣4,3),半径是1的圆.

C2 (θ为参数),化为

C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.


(2)解:当t= 时,P(﹣4,4),Q(8cosθ,3sinθ),故M

直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,

M到C3的距离d= = |5sin(θ+φ)+13|,

从而当cossinθ= ,sinθ=﹣ 时,d取得最小值


【解析】(1)曲线C1 (t为参数),利用sin2t+cos2t=1即可化为普通方程;C2 (θ为参数),利用cos2θ+sin2θ=1化为普通方程.(2)当t= 时,P(﹣4,4),Q(8cosθ,3sinθ),故M ,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,利用点到直线的距离公式与三角函数的单调性即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知面积为S的凸四边形中,四条边长分别记为a1 , a2 , a3 , a4 , 点P为四边形内任意一点,且点P到四边的距离分别记为h1h2 , h3 , h4 , 若 = = = =k,则h1+2h2+3h3+4h4= 类比以上性质,体积为y的三棱锥的每个面的面积分别记为Sl , S2 , S3 , S4 , 此三棱锥内任一点Q到每个面的距离分别为H1 , H2 , H3 , H4 , 若 = = = =K,则H1+2H2+3H3+4H4=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x∈R|ax2﹣3x+2=0,a∈R}.
(1)若A是空集,求a的取值范围;
(2)若A中只有一个元素,求a的值,并把这个元素写出来.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为(其中t为参数).现以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为

(Ⅰ) 写出直线的普通方程和曲线C 的直角坐标方程;

(Ⅱ) 过点且与直线平行的直线交曲线C 两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足条件,且函数是偶函数,当时, ;当时, 的最小值为,则=( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合 ,集合
(1)求A,B;
(2)求(RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设b和c分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2+bx+c=0实根的个数(重根按一个计).
(1)求方程x2+bx+c=0有实根的概率;
(2)求ξ的分布列和数学期望;
(3)求在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x+ ),g(x)= (x﹣ ).
(1)求函数h(x)=f(x)+2g(x)的零点;
(2)求函数F(x)=[f(x)]2n﹣[g(x)]2n(n∈N*)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:a,b,c∈(﹣∞,0),求证:a+ ,b+ ,c+ 中至少有一个不大于﹣2.

查看答案和解析>>

同步练习册答案