分析 (1)由已知运用余弦定理整理可得15b=60,即可解得b的值.
(2)结合范围B∈(0,π),由已知利用同角三角函数基本关系式可求sinB的值,进而利用三角形面积公式即可计算得解.
解答 解:(1)由已知条件a=2,c=7-b,$cosB=-\frac{1}{4}$,
运用余弦定理,$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}$,
可得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{4+(7-b)^{2}-{b}^{2}}{4(7-b)}$=-$\frac{1}{4}$,整理可得:b-7=53-14b,即:15b=60,
解得:b=4.
(2)∵B∈(0,π),
∴$sinB=\sqrt{1-{{cos}^2}B}=\sqrt{1-\frac{1}{16}}=\frac{{\sqrt{15}}}{4}$.
而a=2,c=7-b=3,
由△ABC的面积公式${S_{△ABC}}=\frac{1}{2}acsinB$,
得${S_{△ABC}}=\frac{1}{2}×2×3×\frac{{\sqrt{15}}}{4}=\frac{{3\sqrt{15}}}{4}$.
点评 本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -9 | B. | -7 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{8}{{e}^{2}}$,+∞) | B. | (0,$\frac{8}{{e}^{2}}$] | C. | [$\frac{4}{{e}^{2}}$,+∞) | D. | (0,$\frac{4}{{e}^{2}}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com