精英家教网 > 高中数学 > 题目详情
17.在△ABC中,若a=2,b+c=7,$cosB=-\frac{1}{4}$.
(1)求b的值;
(2)求△ABC的面积.

分析 (1)由已知运用余弦定理整理可得15b=60,即可解得b的值.
(2)结合范围B∈(0,π),由已知利用同角三角函数基本关系式可求sinB的值,进而利用三角形面积公式即可计算得解.

解答 解:(1)由已知条件a=2,c=7-b,$cosB=-\frac{1}{4}$,
运用余弦定理,$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}$,
可得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{4+(7-b)^{2}-{b}^{2}}{4(7-b)}$=-$\frac{1}{4}$,整理可得:b-7=53-14b,即:15b=60,
解得:b=4.
(2)∵B∈(0,π),
∴$sinB=\sqrt{1-{{cos}^2}B}=\sqrt{1-\frac{1}{16}}=\frac{{\sqrt{15}}}{4}$.
而a=2,c=7-b=3,
由△ABC的面积公式${S_{△ABC}}=\frac{1}{2}acsinB$,
得${S_{△ABC}}=\frac{1}{2}×2×3×\frac{{\sqrt{15}}}{4}=\frac{{3\sqrt{15}}}{4}$.

点评 本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在(2x-$\frac{1}{4x}$)5的展开式中,含x3项的系数为-20.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求满足下列条件的椭圆的标准方程.
(1)焦点在y轴上,c=6,$e=\frac{2}{3}$;
(2)经过点(2,0),$e=\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义在R上的奇函数f(x)是周期为2的周期函数,当x∈[0,1)时,f(x)=2x-1,则f(log23)的值为-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)和g(x)分别是定义在R上的奇函数和偶函数,且f(x)-g(x)=2x3+x2+3,则f(2)+g(2)等于(  )
A.-9B.-7C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若命题“p∧(¬q)”与“¬p”均为假命题,则(  )
A.p真q真B.p假q真C.p假q假D.p真q假

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,且满足2sinAcosB=2sinC-sinB.
(1)若cosB=$\frac{5\sqrt{3}}{14}$,求sinC的值;
(2)若b=5,$\overrightarrow{AC}•\overrightarrow{CB}=-5$,求△ABC的内切圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=$\left\{\begin{array}{l}{{x}^{2}(x≤0)}\\{cosx-1(x>0)}\end{array}\right.$,试求${∫}_{-1}^{\frac{π}{2}}$f(x)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若曲线C1:y=x2与曲线C2:y=aex(a>0)至少存在两个交点,则a的取值范围为(  )
A.[$\frac{8}{{e}^{2}}$,+∞)B.(0,$\frac{8}{{e}^{2}}$]C.[$\frac{4}{{e}^{2}}$,+∞)D.(0,$\frac{4}{{e}^{2}}$]

查看答案和解析>>

同步练习册答案