精英家教网 > 高中数学 > 题目详情

已知圆C: 直线
(1)证明:不论取何实数,直线与圆C恒相交;
(2)求直线被圆C所截得的弦长的最小值及此时直线的方程.

(1)见解析;(2)最短弦为4;直线方程为

解析试题分析:(1)只须确定直线上一定点在圆内,则过圆内一点的直线恒与圆相交;(2)由弦心距、半弦、半径构成的直角三角形可过A作AC的垂线,此时的直线与圆C相交于B、D两点,根据圆的几何性质可得,线段BD为直线被圆所截得最短弦,从而求出最短弦和对应的直线.
试题解析:(1)证明:直线可化为:,由此知道直线必经过直线的交点,解得:,则两直线的交点为A(3,1),而此点在圆的内部,故不论为任何实数,直线与圆C恒相交。
(2)联结AC,过A作AC的垂线,此时的直线与圆C相交于B、D两点,根据圆的几何性质可得,线段BD为直线被圆所截得最短弦,此时|AC|,|BC|=5,所以|BD|=4
即最短弦为4;又直线AC的斜率为,所求的直线方程为,即
考点:1.直线与圆的位置关系;2.圆的弦长求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆方程.
(1)若圆与直线相交于M,N两点,且为坐标原点)求的值;
(2)在(1)的条件下,求以为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点和圆

(Ⅰ)过点的直线被圆所截得的弦长为,求直线的方程;
(Ⅱ)若的面积,且是圆内部第一、二象限的整点(平面内横、纵坐标均为整数
的点称为整点),求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是圆上的点
(1)求的取值范围.
(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆及直线. 当直线被圆截得的弦长为时, 求(1)的值; (2)求过点并与圆相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动点M到定点与到定点的距离之比为3.
(Ⅰ)求动点M的轨迹C的方程,并指明曲线C的轨迹;
(Ⅱ)设直线,若曲线C上恰有两个点到直线的距离为1,
求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆和点(1)若过点有且只有一条直线与圆相切,求正实数的值,并求出切线方程;(2)若,过点的圆的两条弦互相垂直,设分别为圆心到弦的距离.
(Ⅰ)求的值;
(Ⅱ)求两弦长之积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率为,其中左焦点. 
(Ⅰ)求出椭圆C的方程;
(Ⅱ) 若直线与曲线C交于不同的A、B两点,且线段AB的中点M在圆上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知:以点C (t, )(t∈R , t ≠ 0)为圆心的圆与轴交于点O, A,
与y轴交于点O, B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y = –2x+4与圆C交于点M, N,若,求圆C的方程.

查看答案和解析>>

同步练习册答案