精英家教网 > 高中数学 > 题目详情

【题目】在四棱中,底面为矩形,平面平面====2,的中点.

(Ⅰ)求证:

(Ⅱ)求点到平面的距离.

【答案】(Ⅰ)见解析(Ⅱ).

【解析】(Ⅰ)∵PD=PC,E为CD的中点,∴PECD,

∵平面PCD平面ABCD,∴PE平面ABCD,

∴PE⊥AC,(2分)

在Rt△BCE和Rt△ABC中,,∠ABC=∠BCE=90°,

∴Rt△BCE∽Rt△ABC,

∴∠BAC=∠CBE,∠ACB=∠BEC,

∴∠EBC+∠ACB=∠CAB+∠ACB=90°,

∴BECA,(5分)

∵BE∩PE=E,

∴AC平面PBE,

.(6分)

(Ⅱ)设点到平面的距离为,连接AE

在Rt△EBC中,CE=1,BC=,∴BE= =

在Rt△ADE中,AD=,DE=1,∴=

在Rt△PEA中,PA==2, (8分)

在Rt△PEB中,PB==2

=

,即,解得

∴点到平面的距离为.(12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨,生产每吨乙产品要用A原料1吨,B原料3吨。销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得最大利润是___________万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)当时,解不等式

2)若关于的方程的解集中恰好有一个元素,求的取值范围;

(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部50名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

参加书法社团

未参加书法社团

参加演讲社团

8

6

未参加演讲社团

6

30

(I)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;

(II)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1A2A3A4A5,3名女同学B1B2B3,现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后随机投掷2枚正方体骰子,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数,
(1)求点P(x,y)在直线y=x﹣1上的概率;
(2)求点P(x,y)满足y2<4x的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设AB=6,在线段AB上任取两点C、D(端点A、B除外),将线段AB分成三条线段AC、CD、DB.
(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形(称为事件A)的概率;
(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形(称为事件B)的概率;
(3)根据以下用计算机所产生的20组随机数,试用随机数模拟的方法,来近似计算(2)中事件B的概率, 20组随机数如下:

组别

1

2

3

4

5

6

7

8

9

10

X

0.52

0.36

0.58

0.73

0.41

0.6

0.05

0.32

0.38

0.73

Y

0.76

0.39

0.37

0.01

0.04

0.28

0.03

0.15

0.14

0.86

组别

11

12

13

14

15

16

17

18

19

20

X

0.67

0.47

0.58

0.21

0.54

0.64

0.36

0.35

0.95

0.14

Y

0.41

0.54

0.51

0.37

0.31

0.23

0.56

0.89

0.17

0.03

(X和Y都是0~1之间的均匀随机数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】. 问:是否存在正数m,使得对于任意正数,可使为三角形的三边构成三角形?如果存在:①试写出一组x,y,m的值,②求出所有m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线,曲线为参数), 以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)若射线)分别交两点, 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于分的学生进入第二阶段比赛.现有名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.

(1)估算这名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;

(2)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得分,进入最后强答阶段.抢答规则:抢到的队每次需猜条谜语,猜对条得分,猜错条扣分.根据经验,甲队猜对每条谜语的概率均为,乙队猜对每条谜语的概率均为,猜对第条的概率均为.若这两条抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?

查看答案和解析>>

同步练习册答案