精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,关于数列{an}有下列三个命题:
①若{an}既是等差数列又是等比数列,则an=an+1(n∈N*)
②若Sn=an2+bn(a 、 b∈R),则{an}是等差数列;
③若Sn=2-2an,则{an}是等比数列.
这些命题中,真命题的序号是
①,②,③
①,②,③
分析:利用前n项和公式求解通项公式,并验证n=1时,是否适合,n=1时∵a1=s1;n>1时,an=sn-sn-1,再根据等差、等比数列定义判断.
解答:解:∵数列{an}既是等差又是等比,an+1-an=d,
an+1
an
=q,∵
an+1
an
=1+
d
an
=q,d、q都是常数,∴an为常数,∴①√;
∵a1=s1=a+b,n>1,an=sn-sn-1=2an-a+b,∴n≥1,an=2an-a+b,
∵an+1-an=2a(n+1)-a+b-2an+a-b=2a(常数),∴{an}为等差数列,②√;
∵a1=s1=
2
3
,a1+a2=2-2a2⇒a2=
4
9
,∴
a2
a1
=
2
3
,当n>1时,an=sn-sn-1=2-2an-2+2an-1,∴3an=2an-1
an
an-1
=
2
3
∴{an}为等比数列,③√
故答案是①②③
点评:本题考查等差数列、等比数列的判断与证明,利用前n项和求解通项公式时,要验证n=1时是否适合.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案