精英家教网 > 高中数学 > 题目详情
已知,tan(
π
4
+α)=3,计算:
(1)tanα
(2)
2sinαcosα+3cos2α
5cos2α-3sin2α

(3)sinα•cosα
(1)∵已知tan(
π
4
+α)=3=
1+tanα
1-tanα
,∴tanα=
1
2

(2)由(1)可得tan2α=
2tanα
1-tan2α
=
1
1-
1
4
=
4
3

2sinαcosα+3cos2α
5cos2α-3sin2α
=
sin2α+3cos2α
5cos2α-3sin2α
=
tan2α+3
5-3tan2α
=
4
3
+3
5-3×
4
3
=
13
3

(3)sinα•cosα=
sinαcosα
cos2α+sin2α
=
tanα
1+tan2α
=
1
2
1+
1
4
=
2
5
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在△ABC中,a=λ,b=
3
λ(λ>0),∠A=45°则满足此条件的三角形有(  )
A.0个B.1个C.2个D.无数个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知△ABC满足c=2acosB,则△ABC的形状是(  )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC中,sinA=sinB,则三角形的形状为(  )
A.直角△B.等腰△C.等边△D.锐角△

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若不等式a>2sinxcosx+
3
cos2x
恒成立,则实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=sinωx•cosωx+
3
cos2ωx-
3
2
(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为
π
4

(I)求f(x)的表达式;
(Ⅱ)将函数f(x)的图象向右平移
π
8
个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间[0,
π
2
]
上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知集合M={a,b,c}中的三个元素可构成某一三角形的三边长,那么此三角形一定不是(  )
A.直角三角形B.锐角三角形C.等腰三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为奇函数,且相邻两对称轴间的距离为
(1)当时,求的单调递减区间;
(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,求的值.

查看答案和解析>>

同步练习册答案