精英家教网 > 高中数学 > 题目详情
已知椭圆C:+=1(a>b>0)的上顶点为P(0,1),过C的焦点且垂直长轴的弦长为1.若有一菱形ABCD的顶点A、C在椭圆C上,该菱形对角线BD所在直线的斜率为-1.
(1)求椭圆∑的方程;
(2)当直线BD过点(1,0)时,求直线AC的方程;
(3)当∠ABC=时,求菱形ABCD面积的最大值.
【答案】分析:(1)依题意,b=1,解,得|y|=,所以,由此能求出椭圆E的方程.
(2)直线BD:y=-1×(x-1)=-x+1,设AC:y=x+b,由方程组,再由根的判别式、中点坐标公式和菱形的性质能推导出AC的方程.
(3)因为四边形ABCD为菱形,且,所以AB=AC=BC,所以菱形ABCD的面积,由AC2=(x2-x12+(y2-y12=2(x2-x12=2(x2+x12-8x1x2=,能推导出当且仅当b=0时,菱形ABCD的面积取得最大值.
解答:解:(1)依题意,b=1,
,得|y|=
所以,a=2,
椭圆E的方程为
(2)直线BD:y=-1×(x-1)=-x+1,
设AC:y=x+b,
由方程组
时,
A(x1,y1),C(x2,y2)的中点坐标为=-
ABCD是菱形,所以AC的中点在BD上,所以
解得,满足△=5-b2>0,所以AC的方程为y=x-
(3)因为四边形ABCD为菱形,且,所以AB=AC=BC,所以菱形ABCD的面积
由(2)可得AC2=(x2-x12+(y2-y22=2,
AC2=(x2-x12+(y2-y12=2(x2-x12=2(x2+x12-8x1x2=2×=
因为,所以当且仅当b=0时,菱形ABCD的面积取得最大值,最大值为
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要灵活运用根的判别式、中点坐标公式和菱形的性质,结合椭圆的性质注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:+y2=1,则与椭圆C关于直线y=x成轴对称的曲线的方程是____________.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题

已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西桂林市、崇左市、防城港市高考第一次联合模拟理科数学试卷(解析版) 题型:解答题

 如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F、F,A是椭圆C上的一点,AF⊥FF,O是坐标原点,OB垂直AF于B,且OF=3OB.

(Ⅰ)求椭圆C的离心率;

(Ⅱ)求t∈(0,b),使得命题“设圆x+y=t上任意点M(x,y)处的切线交椭圆C于Q、Q两点,那么OQ⊥OQ”成立.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省攀枝花市高三12月月考文科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为

(1)求椭圆方程;

(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三上学期摸底考试文科数学 题型:解答题

(本题满分14分)已知椭圆C:=1(a>b>0)的离心率为,短轴一

 

个端点到右焦点的距离为3.

(1)求椭圆C的方程;

(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

 

 

 

查看答案和解析>>

同步练习册答案