精英家教网 > 高中数学 > 题目详情
设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x)…fn+1(x)=fn′(x),x∈N*  则f2015
π
3
)=
 
考点:导数的运算
专题:导数的概念及应用
分析:由题意对函数的变化规律进行探究,发现呈周期性的变化,且其周期是4,即可得到结论.
解答: 解:由题意f0(x)=sinx,
f1(x)=f0′(x)=cosx,
f2(x)=f1′(x)=-sinx,
f3(x)=f2′(x)=-cosx,
f4(x)=f3′(x)=sinx,
由此可知,在逐次求导的过程中,所得的函数呈周期性变化,从0开始计,周期是4,
∵2015=4×503+3,
故f2015(x)=f3(x)=-cosx
∴f2015
π
3
)=-cos
π
3
=-
1
2

故答案为:-
1
2
点评:本题考查函数的周期性,探究过程中用的是归纳推理,对其前几项进行研究得出规律,求解本题的关键一是要归纳推理的意识,一是对正、余弦函数的导数求法公式熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的通项公式为an=n2+λn,对于任意自然数n(n≥1)都是递增数列,则实数λ的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

{an}是等比数列,Sn是{an}的前n项和,对任意正整数n,有an+2an+1+an+2=0,又a1=2,则S101=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:a1=1,an+1=3an,n∈N*
(1)求a2,a3
(2)求{an}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球的半径为5,球面被互相垂直的两个平面所截,得到的两个圆的公共弦长为2
3
,若其中一个圆的半径为2
3
,则另一个圆的半径为(  )
A、3
B、4
C、
10
D、
11

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是[-1,1]上的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(-
1
2
)=(  )
A、-
1
2
B、-
1
4
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(3x+1)=x2+3x+2,则f(4)=(  )
A、30B、6C、210D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

若α的终边不与坐标轴重合,且tanα≠±1,则
[sin2(2kπ-α)-cos2(2015π+α)]tan(2α-kπ)
sin(-
2
+α)cos(-α+
2
)
(k∈Z)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,an+1-an=2,n∈N*,数列{an}的前n项和为Sn
(1)求数列{an}的通项公式及前n项和Sn公式;
(2)求数列{
1
anan+1
}的前n项和Tn

查看答案和解析>>

同步练习册答案