分析 (1)由分母不为零求出函数的定义域,由函数奇偶性的定义域进行判断;
(2)根据函数单调性的定义判断、证明f(x)在(-∞,0)上的单调性.
解答 解:(1)函数f(x)是奇函数,
由32x-1≠0得x≠0,则函数的定义域是{x|x≠},
因为$f(-x)=\frac{{3}^{-(2x)}+1}{{3}^{-(2x)}-1}$=$\frac{{1+3}^{2x}}{{1-3}^{2x}}$=-f(x),
所以函数f(x)是奇函数;
(2)函数f(x)在(-∞,0)上是减函数,证明如下:
设x1<x2<0,则f(x1)-f(x2)=$\frac{{3}^{2{x}_{1}}+1}{{3}^{2{x}_{1}}-1}$-$\frac{{3}^{2{x}_{2}}+1}{{3}^{2{x}_{2}}-1}$
=$\frac{{(3}^{2{x}_{1}}+1)({3}^{2{x}_{2}}-1)-({3}^{2{x}_{2}}+1)({3}^{2{x}_{1}}-1)}{{(3}^{2{x}_{1}}-1)({3}^{2{x}_{2}}-1)}$
=$\frac{2({3}^{2{x}_{2}}-{3}^{2{x}_{1}})}{{(3}^{2{x}_{1}}-1)({3}^{2{x}_{2}}-1)}$,
∵x1<x2<0,
∴${3}^{2{x}_{1}}-1<0$,${3}^{2{x}_{2}}-1<0$,${3}^{2{x}_{2}}-{3}^{2{x}_{1}}>0$,
∴f(x1)-f(x2)>0,则f(x1)>f(x2),
∴函数f(x)在(-∞,0)上是减函数.
点评 本题考查函数的奇偶性、单调性的判断与证明,一般利用定义证明,考查化简、变形能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x>y | B. | x+y>0 | C. | x<y | D. | x2>y2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,+∞) | B. | $[\frac{1}{3},1]$ | C. | $[\frac{1}{3},+∞)$ | D. | (0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x0∈R,x02-3x0+5≤0 | B. | ?x0∈R,x02-3x0+5>0 | ||
C. | ?x∈R,x2-3x+5≤0 | D. | ?x0∈R,x02-3x0+5>0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com