精英家教网 > 高中数学 > 题目详情
14.0∈N,$\sqrt{5}$∉Q,$\sqrt{16}$∈N*,$3\frac{1}{2}$∉ Z.

分析 分析给定元素的分类,进而可得元素与集合的关键.

解答 解:0是自然数,故0∈N,
$\sqrt{5}$是无理数,故$\sqrt{5}$∉Q,
$\sqrt{16}$=4是正整数,故$\sqrt{16}$∈N*
$3\frac{1}{2}$是分数,故$3\frac{1}{2}$∉Z;
故答案为:∈,∉,∈,∉

点评 本题考查的知识点是元素与集合关系的判断,熟练掌握各种数集的字母表示,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.判断函数y=$\frac{{a}^{x}-1}{{a}^{x}+1}+ln\frac{{a}^{x}-1}{{a}^{x}+1}$的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,在边长为a的正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,现沿SE,SF及EF把这个正方形折成一个三棱锥,使G1,G2,G3三点重合,重合点记为G,则点G到平面SEF的距离为$\frac{a}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等差数列{an}中,若a8=-3,a10=1,则an=2n-19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上存在一点 P满足$∠{A}{P}F=\frac{π}{2}$,F为椭圆的左焦点,A为椭圆的右顶点,则椭圆的离心率的范围是(  )
A.$({0,\frac{1}{2}})$B.$({0,\frac{{\sqrt{2}}}{2}})$C.$({\frac{1}{2},1})$D.$({\frac{{\sqrt{2}}}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若数列{an}为等比数列,且a1=2,S3=26,则公比q=3或-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)是定义在R上的奇函数,f(x+2)=f(x),当x∈(0,1]时,f(x)=1-2|x-$\frac{1}{2}$|,则函数g(x)=f[f(x)]-$\frac{4}{3}$x在区间[-2,2]内不同的零点个数是(  )
A.5B.6C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C的圆心在直线y=x+1上,半径为$\sqrt{2}$,且圆C经过点P(5,4)
(1)求圆C的标准方程;
(2)求过点A(1,0)且与圆C相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设点M(0,-5),N(0,5),△MNP的周长为36,则△MNP的顶点P的轨迹方程为(  )
A.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{25}$=1(x≠0)B.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{144}$=1(x≠0)
C.$\frac{{x}^{2}}{169}$+$\frac{{y}^{2}}{25}$=1(y≠0)D.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{25}$=1(y≠0)

查看答案和解析>>

同步练习册答案