精英家教网 > 高中数学 > 题目详情
9.把数列{3n}(n∈N*)中的数按上小下大,左小右大的原则排成如图所示三角形表:

设a(i,j)(i,j∈N*)是位于从上往下第i行且从左往右第j个数,则a(37,6)=2016.

分析 由已知可得前36行共有1+2+3+…+36=666个数,即a(37,6)为672个数,再由数列的通项公式,可得答案.

解答 解:由已知可得前36行共有1+2+3+…+36=666个数,
即a(37,6)为672个数,
∴a(37,6)=672×3=2016,
故答案为:2016

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知等比数列{an}中,a6=2,公比q>0,则log2a1+log2a2+log2a3+…+log2a11=11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$)(ω>0)
(1)若f(x+θ)是周期为2π的偶函数.求ω及θ值;
(2)在(1)的条件下求函数f(x)在[-$\frac{π}{2}$,$\frac{π}{3}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.根据条件求抛物线的标准方程.
(1)抛物线的顶点在原点,以坐标轴为对称轴,且焦点在直线x+y+2=0上;
(2)抛物线的顶点在原点,焦点是圆x2十y2-4x=0的圆心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+\frac{3}{4}(x≤0)}\\{lnx+a(x>0)}\end{array}\right.$的图象在A,B两点处的切线重合,则实数a的取值范围为(-∞,ln2+$\frac{11}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:
(1)(2$\frac{3}{5}$)0+2-2•(2$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$+($\frac{25}{36}$)0.5+$\sqrt{(-2)^{2}}$;
(2)$\frac{1}{2}$1g$\frac{32}{49}$一$\frac{4}{3}$1g$\sqrt{8}$+lg$\sqrt{245}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设A1,A2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴的两个端点,P1,P2是垂直于x轴的直线与此椭圆的两个交点,M为直线A1P1与A2P2的交点,求证:点M的轨迹方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如果实数x,y满足条件$\left\{\begin{array}{l}{\stackrel{3x+y-3≥0}{x-1≤0}}\\{y-3≤0}\end{array}\right.$,则z=3x+5y的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=2x-5x则函数f(x)的零点所在区间可以为(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

同步练习册答案