精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若对任意恒成立,求的取值范围;

2)若函数有两个不同的零点,证明:.

【答案】1,(2)证明见解析

【解析】

1)对任意恒成立,可变形为,因此只要求得的最大值即可,这可由导数的知识求解;

2)首先利用导数研究的单调性,确定零点分布,不妨设,得,然后用分析法转化所要证不等式,由,这时以退为进,证明,即证,现在可构造函数.证明,这又可用导数证明.

1)解:由对任意恒成立,得对任意恒成立.

,则.

,则.

上,单调递增;在上,单调递减.

,即的取值范围为.

2)证明:设,则.

上,单调递增;在上,单调递减.

,当时,,且

.

要证,即证.

上单调递减,

只需证明.

,只需证明.

.

上单调递增,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某校中小学生人数和近视情况分别如图所示.为了解该校中小学生的近视形成原因,用分层抽样的方式从中抽取一个容量为50的样本进行调查.

(1)求样本中高中生、初中生及小学生的人数;

(2)从该校初中生和高中生中各随机抽取1名学生,用频率估计概率,求恰有1名学生近视的概率;

(3)假设高中生样本中恰有5名近视学生,从高中生样本中随机抽取2名学生,用表示2名学生中近视的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆:和定点,是圆上任意一点,线段的垂直平分线交于点,设动点的轨迹为.

(1)求的方程;

(2)过点作直线与曲线相交于,两点(,不在轴上),试问:在轴上是否存在定点,总有?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解运动健身减肥的效果,某健身房调查了20名肥胖者,健身之前他们的体重情况如三维饼图(1)所示,经过四个月的健身后,他们的体重情况如三维饼图(2)所示.对比健身前后,关于这20名肥胖者,下面结论不正确的是(

A.他们健身后,体重在区间[90kg100kg)内的人数不变

B.他们健身后,体重在区间[100kg110kg)内的人数减少了4

C.他们健身后,这20位健身者体重的中位数位于[90kg100kg

D.他们健身后,原来体重在[110kg120kg]内的肥胖者体重都至少减轻了10kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.证明:

1)存在唯一x0∈(0,1),使f(x0)0

2)存在唯一x1∈(12),使g(x1)0,且对(1)中的x0,有x0x1<2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,若函数4个不同的零点,且,则的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)恒成立的实数的最大值

(2)设,且满足,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和函数的最值;

(2)已知关于的不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点的直线交抛物线两点.

1)当时,求直线的方程;

2)若过点且垂直于直线的直线与抛物线交于两点,记的面积分别为,求的最小值.

查看答案和解析>>

同步练习册答案