精英家教网 > 高中数学 > 题目详情

已知抛物线x2=4y的焦点是椭圆  数学公式一个顶点,椭圆C的离心率为数学公式,另有一圆O圆心在坐标原点,半径为数学公式
(1)求椭圆C和圆O的方程;
(2)已知M(x0,y0)是圆O上任意一点,过M点作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,求证:l1⊥l2

(1)解:由x2=4y可得抛物线焦点坐标为(0,1),∴b=1,
又∵,∴,∴a2=4,

∴椭圆C的方程为,圆O的方程为x2+y2=5
(2)证明:若点M的坐标为(2,1),(2,-1),(-2,-1),(-2,1),则过这四点分别作满足条件的直线l1,l2,若一条直线斜率为0,则另一条斜率不存在,则l1⊥l2
若直线l1,l2斜率都存在,则设过M与椭圆只有一个公共点的直线方程为y-y0=k(x-x0),



化简得


设直线l1,l2的斜率分别为k1,k2,因为l1,l2与椭圆都只有一个公共点,
所以k1,k2满足

∴l1⊥l2
分析:(1)确定抛物线焦点坐标,可得b的值,利用椭圆C的离心率为,另有一圆O圆心在坐标原点,半径为,即可求椭圆C和圆O的方程;
(2)分类讨论,利用韦达定理,计算斜率的积为-1,即可证得结论.
点评:本题考查椭圆与圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知抛物线x2=4y的焦点F和点A(-1,8),点P为抛物线上一点,则|PA|+|PF|的最小值为
9

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知抛物线x2=4y的焦点F和点A(-1,8),P为抛物线上一点,则|PA|+|PF|的最小值是
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线x2=4y上的点P(非原点)处的切线与x轴,y轴分别交于Q,R两点,F为焦点.
(Ⅰ)若
PQ
PR
,求λ.
(Ⅱ)若抛物线上的点A满足条件
PF
FA
,求△APR的面积最小值,并写出此时的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•温州一模)如图,已知抛物线x2=4y,过抛物线上一点A(x1,y1)(不同于顶点)作抛物线的切线l,并交x轴于点C,在直线y=-1上任取一点H,过H作HD垂直x轴于D,并交l于点E,过H作直线HF垂直直线l,并交x轴于点F.
(I)求证:|OC|=|DF|;
(II)试判断直线EF与抛物线的位置关系并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浙江模拟)已知抛物线x2=4y,圆C:x2+(y-2)2=4,M(x0,y0),(x0>0,y0>0)为抛物线上的动点.
(Ⅰ)若y0=4,求过点M的圆的切线方程;
(Ⅱ)若y0>4,求过点M的圆的两切线与x轴围成的三角形面积S的最小值.

查看答案和解析>>

同步练习册答案