精英家教网 > 高中数学 > 题目详情

(本题13分)
如图,在四棱锥中,平面,底面是菱形,.分别是的中点.

(1) 求证:
(2) 求证:.

(1)先证,根据面面垂直的性质定理可知
(2)先证FG//AE,且FG=AE,再证AG//EF,根据线面平行的判定定理可证.

解析试题分析:(1)在菱形ABCD中,所以,AB=BD,
因为Q是AD的中点,
所以,且
又因为,平面PAD平面ABCD,平面PAD平面ABCD=AD,
所以.                                                 ……6分
(2)取PD中点G,连接AG,FG,
因为E、F分别是AB,PC中点,
所以FG//AE,且FG=AE,
所以,四边形AEFG为平行四边形,所以,AG//EF
又因为
所以。                                               ……13分
考点:本小题主要考查线面垂直和线面平行的证明,考查学生的空间想象能力和推理能力.
点评:要证明线面垂直和线面平行,要紧扣相应的定理的条件,定理中的条件要一一列出来,缺一不可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD

(1)求证:AB⊥平面PBC
(2)求三棱锥C-ADP的体积
(3)在棱PB上是否存在点M使CM∥平面PAD?
若存在,求的值。若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中,,点上,且

(Ⅰ)证明:平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,,,中点,中点,且为正三角形.

(1)求证:平面.
(2)求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分) 如图,P—ABCD是正四棱锥,是正方体,其中 

(1)求证:
(2)求平面PAD与平面所成的锐二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE∶ED=λ,使得二面角C-AN-E的平面角为60o.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)在正四棱柱ABCD-A1B1C1D1中,E为CC1的中点.

(1)求证:AC1∥平面BDE;(2)求异面直线A1E与BD所成角。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. 的中点.

(1)当时,求平面与平面的夹角的余弦值;
(2)当为何值时,在棱上存在点,使平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.

(1)求证:EF ∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

同步练习册答案