精英家教网 > 高中数学 > 题目详情
3.已知满足$\left\{{\begin{array}{l}{2x-y+2≥0}\\{x-2y+1≤0}\\{x+y-2≤0}\end{array}}\right.$的(x,y)使x2+(y-1)2≤m恒成立,则m的取值范围是(  )
A.m≥1B.$m≥\sqrt{2}$C.m≥2D.$m≥\sqrt{5}$

分析 先画出满足条件的平面区域,根据x2+(y-1)2的几何意义求出其最大值即可.

解答 解:画出满足条件的平面区域,如图示:

若使x2+(y-1)2≤m恒成立,
只需求出使x2+(y-1)2的最大值即可,
由图象得:B(-1,0),
以(0,1)为圆心以AB为半径时x2+(y-1)2的值最大,
而AB2=2,
∴m≥2,
故选:C.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知等差数列{an}的前n项和为Sn,若a1=-2,S6=12,则a6的值为(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.三棱锥P-ABC的四个顶点都在球D的表面上,PA⊥平面ABC,AB⊥BC,PA=3,AB=BC=2,则球O的表面积为(  )
A.13πB.17πC.52πD.68π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x+1|,g(x)=|ax|
(1)当a=1时,解不等式f(x)≥g(x)+1;
(2)当a=2时,若对一切x∈R,恒有f(x)+g(x)≥b成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设命题甲:关于x的不等式x2+2ax+4≥0对一切x∈R恒成立,命题乙:设函数f(x)=loga(x-a+2)在区间(1,+∞)上恒为正值,那么甲是乙的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)-sin(2x+π).
(1)求f(x)的最小正周期和单调递减区间;
(2)若将f(x)的图象向右平移$\frac{π}{4}$个单位,得到函数g(x)的图象,求函数g(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{x^2+3,x≤1}\\{{x}^{\frac{1}{2}},x>1}\end{array}\right.$,则f[f(-1)]的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知三棱锥S-ABC所在顶点都在球O的球面上,且SC⊥平面ABC,若SC=AB=AC=1,∠BAC=120°,则球O的表面积为5π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC的三个内角A、B、C所对的边分别为a,b,c,并且asinAsinB+bcos2A=a,则$\frac{b}{a}$=1.

查看答案和解析>>

同步练习册答案