精英家教网 > 高中数学 > 题目详情
若关于x的不等式x2+2x>mx的解集为{x|0<x<2},则实数m的值为

A.1                    B.-2                    C.-3                   D.3

答案:A

解析:不等式可化为x2-(4-2m)x<0,即x[x-(4-2m)]<0,∵解集为{x|0<x<2},∴4-2m=2.故m=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、若关于x的不等式x2-4x≥m对任意x∈[-1,1]恒成立,则实数m的取值范围是
(-∞,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式x2-px-q<0的解集为(2,3),则关于x的不等式qx2-px-1>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式x2-ax+1≤0,ax2+x-1>0均不成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式x2-2ax+a2-ab+4≤0恰有一个解,则a2+b2的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义区间长度m为这样的一个量:m的大小为区间 右端点的值减去左端点的值.若关于x的不等式x2-x-6a<0有解,且解集的区间长度不超过5个单位长,则a的取值范围是(  )

查看答案和解析>>

同步练习册答案