精英家教网 > 高中数学 > 题目详情

【题目】已知点的坐标分别为.三角形的两条边所在直线的斜率之积是.

1)求点的轨迹方程;

2)设直线方程为,直线方程为,直线,点关于轴对称,直线轴相交于点.的面积为,求的值.

【答案】(1)(2)

【解析】

(1)本题可以先将点的坐标设出,然后写出直线的斜率与直线的斜率,最后根据所在直线的斜率之积是即可列出算式并通过计算得出结果;

(2)首先可以联立直线的方程与直线的方程,得出点两点的坐标,然后联立直线的方程与点的轨迹方程得出点坐标并写出直线的方程,最后求出点坐标并根据三角形面积公式计算出的值。

1)设点的坐标为,因为点的坐标分别为

所以直线的斜率,直线的斜率

由题目可知,化简得点的轨迹方程

2)直线的方程为,与直线的方程联立,

可得点,故.

联立,消去,整理得

解得,或,根据题目可知点

可得直线的方程为

,解得,故

所以的面积为

又因为的面积为,故

整理得,解得,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中的导函数,设,且恒成立.

1)求的取值范围;

2)设函数的零点为,函数的极小值点为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD是边长为2的菱形,∠ABC=60°,平面AEFC⊥平面ABCDEFACAE=ABAC=2EF.

1)求证:平面BED⊥平面AEFC

2)若四边形AEFC为直角梯形,且EAAC,求二面角B-FC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为(其中t为参数).以坐标原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为

(1)求lC的直角坐标方程.

(2)设点,直线l交曲线CAB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知),的图象上相邻两条对称轴之间的距离为

1)求函数的单调递增区间;

2)若的内角的对边分别为,且,求的值及边上的中线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为),直线的参数方程为为参数).

1)写出曲线的直角坐标方程和直线的普通方程;

2)己知点,直线与曲线交于两点,若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为.

(1)写出直线的普通方程与曲线的直角坐标方程;

(2)设直线上的定点在曲线外且其到上的点的最短距离为,试求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从的路径中,最短路径的长度为( )

A. B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形,,平面平面是等边三角形.

1)求证:

2)若的面积为,求点到平面的距离.

查看答案和解析>>

同步练习册答案