【题目】已知点的坐标分别为,.三角形的两条边,所在直线的斜率之积是.
(1)求点的轨迹方程;
(2)设直线方程为,直线方程为,直线交于,点,关于轴对称,直线与轴相交于点.若的面积为,求的值.
【答案】(1)(2)
【解析】
(1)本题可以先将点的坐标设出,然后写出直线的斜率与直线的斜率,最后根据、所在直线的斜率之积是即可列出算式并通过计算得出结果;
(2)首先可以联立直线的方程与直线的方程,得出点两点的坐标,然后联立直线的方程与点的轨迹方程得出点坐标并写出直线的方程,最后求出点坐标并根据三角形面积公式计算出的值。
(1)设点的坐标为,因为点的坐标分别为、,
所以直线的斜率,直线的斜率,
由题目可知,化简得点的轨迹方程;
(2)直线的方程为,与直线的方程联立,
可得点,故.
将与联立,消去,整理得,
解得,或,根据题目可知点,
由可得直线的方程为,
令,解得,故,
所以,的面积为
又因为的面积为,故,
整理得,解得,所以。
科目:高中数学 来源: 题型:
【题目】如图,已知四边形ABCD是边长为2的菱形,∠ABC=60°,平面AEFC⊥平面ABCD,EF∥AC,AE=AB,AC=2EF.
(1)求证:平面BED⊥平面AEFC;
(2)若四边形AEFC为直角梯形,且EA⊥AC,求二面角B-FC-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为(其中t为参数).以坐标原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(1)求l和C的直角坐标方程.
(2)设点,直线l交曲线C于A,B两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,(,),且的图象上相邻两条对称轴之间的距离为.
(1)求函数的单调递增区间;
(2)若的内角,,的对边分别为,,,且,,,求,的值及边上的中线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为(),直线的参数方程为(为参数).
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)己知点,直线与曲线交于,两点,若,,成等比数列,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为.
(1)写出直线的普通方程与曲线的直角坐标方程;
(2)设直线上的定点在曲线外且其到上的点的最短距离为,试求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( )
A. B. C. D. 2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com