精英家教网 > 高中数学 > 题目详情
10.若函数y=f(x)=$\frac{a•{2}^{x}-1-a}{{2}^{x}-1}$为奇函数.
(1)确定a的值;
(2)求函数的定义域;
(3)求函数的值域;
(4)讨论函数的单调性.

分析 (1)根据函数奇偶性的定义和性质建立方程关系即可确定a的值;
(2)根据函数出来的条件即可求函数的定义域;
(3)利用分式函数的性质结合指数函数的性质即可求函数的值域;
(4)根据指数函数单调性的性质进行讨论即可判断函数的单调性.

解答 解:(1)∵函数的定义域为(-∞,0)∪(0,+∞),
∴若f(x)为奇函数,
则f(-x)=-f(x),即$\frac{a•{2}^{-x}-1-a}{{2}^{-x}-1}$=-$\frac{a•{2}^{x}-1-a}{{2}^{x}-1}$,
即$\frac{a-{2}^{x}-a•{2}^{x}}{1-{2}^{x}}$=-$\frac{a•{2}^{x}-1-a}{{2}^{x}-1}$,
则a-2x-a•2x=a•2x-a-1,
(2a+1)=(2a+1)•2x
则2a+1=0,则a=-$\frac{1}{2}$.
(2)由2x-1≠0得x≠0,即函数的定义域为(-∞,0)∪(0,+∞);
(3)当a=-$\frac{1}{2}$时,f(x)=$\frac{a•{2}^{x}-1-a}{{2}^{x}-1}$=$\frac{-\frac{1}{2}•{2}^{x}-1+\frac{1}{2}}{{2}^{x}-1}$=-$\frac{1}{2}•$$\frac{{2}^{x}+1}{{2}^{x}-1}$=-$\frac{1}{2}$•$\frac{{2}^{x}-1+2}{{2}^{x}-1}$=-$\frac{1}{2}$•(1+$\frac{2}{{2}^{x}-1}$)=$-\frac{1}{2}$-$\frac{1}{{2}^{x}-1}$,
∵2x-1>-1,且2x-1≠0,
∴$\frac{1}{{2}^{x}-1}$<-1或$\frac{1}{{2}^{x}-1}$>0,
则-$\frac{1}{{2}^{x}-1}$>1或-$\frac{1}{{2}^{x}-1}$<0,
即$-\frac{1}{2}$-$\frac{1}{{2}^{x}-1}$>1$-\frac{1}{2}$=$\frac{1}{2}$或$-\frac{1}{2}$-$\frac{1}{{2}^{x}-1}$<$-\frac{1}{2}$,
即函数的值域为(-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞);
(4)当x>0时,2x-1>0,且y=2x-1为增函数,则y=$\frac{1}{{2}^{x}-1}$为减函数,y=-$\frac{1}{{2}^{x}-1}$为增函数,y=$-\frac{1}{2}$-$\frac{1}{{2}^{x}-1}$为增函数,
当x<0时,2x-1<0,且y=2x-1为增函数,则y=$\frac{1}{{2}^{x}-1}$为减函数,y=-$\frac{1}{{2}^{x}-1}$为增函数,y=$-\frac{1}{2}$-$\frac{1}{{2}^{x}-1}$为增函数,
即函数的单调递增区间为(-∞,0),(0,+∞).

点评 本题主要考查综合考查函数的定义域值域,奇偶性,单调性的性质,利用分式函数的性质以及指数函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R),则“$φ=\frac{π}{2}$”是“f(x)是偶函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设△ABC的内角A,B,C,的对边分别为a,b,c,满足a(tanA+tanC)+b=btanA•tanC,且角A为钝角.
(1)求A-B的值;
(2)若b=3,cosB=$\frac{\sqrt{6}}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,E,F分别为正方形的面ADD1A1、BCC1B1的中心,则四边形BFD1E在该正方形上的平行投影不可能为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为sn,且满足a1=1,an+1=3Sn
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:bn=log4an,求数列{bn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1和环公园人行道(阴影部分)组成,已知人行道的宽分别为4m和10m
(1)若休闲区A1B1C1D1的面积为4000平方米,则要使公园占地面积最小,休闲区A1B1C1D1的长和宽应如何设计?
(2)若公园的面积为4000平方米,要使休闲区A1B1C1D1的面积最大,公园的长和宽应如何设计?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2-2(a-1)x-3.
(1)若函数f(x)的单调递增区间是(-1,+∞),求实数a的取值集合;
(2)若函数f(x)在区间(0,1)上不是单调函数,求实数a的取值范围;
(3)若函数f(x)的定义域为[0,2],且f(x)在x=2时取得最大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.判断下列函数的奇偶性:
(1)f(x)=$\sqrt{2}$sin(2x+$\frac{5}{2}$π);
(2)f(x)=$\sqrt{2sinx-1}$;
(3)f(x)=lg(sinx+$\sqrt{1+si{n}^{2}x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为(  )
A.$\frac{π}{4}$B.$\frac{5}{4}π$C.πD.$\frac{3}{2}π$

查看答案和解析>>

同步练习册答案