精英家教网 > 高中数学 > 题目详情
(本小题14分)

如图4,正方体中,点E在棱CD上。
(1)求证:
(2)若E是CD中点,求与平面所成的角;
(3)设M在上,且,是否存在点E,使平面⊥平面,若存在,指出点E的位置,若不存在,请说明理由。
解:以D为坐标原点,DA,DC,依次为轴、轴,轴正方向建立空间直角坐标系,并设正方体棱长为1,设点E的坐标为。                 ………2分
(1)
∵ 
∴ 。                                              ………5分
(2)当E是CD中点时,
,设平面的一个法向量是
则由得一组解是,………7分
,由
从而直线与平面所成的角的正弦值是。      ………9分
(3)设存在符合题意的E点为E(0,t,0)
可得平面的一个法向量是
平面的一个法向量是 …11分
∵ 平面⊥平面
∴ 
解得(舍),                                   ………13分
故当点E是CD的中点时,平面⊥平面,      ………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

((本题满分12分)
已知长方体ABCD-中,棱AB=BC=3,=4,连结, 在上有点E,使得⊥平面EBD ,BE交于F.

(1)求ED与平面所成角的大小;
(2)求二面角E-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

、如图,已知四棱锥中,底面是直角梯形,平面. 
(1)求证:平面
(2)求证:平面
(3)若M是PC的中点,求三棱锥M—ACD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在棱长为
正方体ABCD—A1B1C1D1中,E、F、H分别是棱BB1、CC1、DD1的中点。

(Ⅰ)求证:BH//平面A1EFD1;
(Ⅱ)求直线AF与平面A1EFD1所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,正方形的边长都是1,平面平面,点上移动,点上移动,若

(I)求的长;
(II)为何值时,的长最小;
(III)当的长最小时,求面与面所成锐二面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,
∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求证:PC⊥
(2)求证:CE∥平面PAB;
(3)求三棱锥P-ACE的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是三条不重合的直线, 是三个不重合的平面,下列四个命题正确的个数为            (   )
①若, m∥
②若直线m,n与平面所成的角相等,则m∥n;
③存在异面直线m,n,使得m∥,m//,n∥β,则//;
④若,则m∥n.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体中,是侧面内一动点,若到直线与直线的距离相等,则动点的轨迹所在的曲线是
A.直线B.圆C.抛物线D.双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知三棱锥A-PBC ∠ACB=90°
AB=20  BC=4  PAPC,D为AB中点且△PDB为正三角形
(1)求证:BC⊥平面PAC;
(2)求三棱锥D-PBC的体积。

查看答案和解析>>

同步练习册答案