精英家教网 > 高中数学 > 题目详情
2.已知P(m,n)是直线3x+4y-12=0上的一点,求(m-1)2+(n-2)2的最小值.

分析 由题意知所求点(m,n)为直线上到点(1,2)最近的点的距离的平方,由此能求出(m-1)2+(n-2)2的最小值.

解答 解:由题意知(m-1)2+(n-2)2的最小值表示点(m,n)为直线上到点(1,2)最近的点的距离的平方,
由点到直线的距离为$\frac{|3+8-12|}{\sqrt{9+16}}$=$\frac{1}{5}$,
∴(m-1)2+(n-2)2的最小值为$\frac{1}{25}$.

点评 本题考查点到直线的距离的最小值,解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=4sinxcos(x+$\frac{π}{6}$)+1,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在区间[-$\frac{π}{4},\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求以坐标轴为对称轴,一条渐进线方程为x+3y=0,并且过点(3,2)的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=cos2(x-$\frac{π}{6}$)-sin2x,其中x∈R.
(1)求函数f(x)的值域;
(2)已知α为第二象限角,且f($\frac{α}{2}$-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,求$\frac{1+cos2α-sin2α}{\sqrt{2}sin(α-\frac{π}{4})}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知实数x,y满足y=x2-x+2(-1≤x≤1),试求$\frac{y+3}{x+2}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求值:
(1)cos20°•cos40°•cos80°;
(2)tan70°•cos10°•($\sqrt{3}$tan20°-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设y=f(x)是定义在实数集R上的函数,且满足f(-x)=f(x)与f(4-x)=f(x),若当x∈[0,2]时,f(x)=-x2+1,则当x∈[-6,-4]时,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若实数x,y满足|x|+|y|≤1,则|4x+y-2|+|3-x-2y|的最小值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.复平面上复数z对应的点Z在曲线|z-1|=2上,求复数2z-1-i在复平面上对应点的轨迹方程.(化成直角坐标方程)

查看答案和解析>>

同步练习册答案