精英家教网 > 高中数学 > 题目详情

【题目】已知四边形ABCD外切于,△ACB的内切圆与边AB、BC的切点分别为P、Q,,△ACD的内切圆与边CD、DA的切点分别为R、S. 求证:三条直线PQ、RS、AC共点或平行.

【答案】见解析

【解析】

与AC的切点分别为分别是△ACB、△ACD的内切圆知

又由四边形ABCD外切于知AB+AD=CB+CD.从而,

这表明,点M与重合.

PQ∥AC,易知AC两点关于直线BD对称,则RS∥AC.

于是,PQ、RS、AC互相平行.

PQAC,则易知RSAC.

如图,记直线PQ、RS分别与直线AC交于点N、

对△ACB和截线PQN应用梅涅劳斯定理得

结合BP=BQ,得 同理,

这表明,点N与重合,即PQ、RS、AC三线共点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年高考数学的全国Ⅲ卷中,文科和理科的选做题题目完全相同,第22题考查选修4-4:极坐标和参数方程;第23题考查选修4-5:不等式选讲.某校高三质量检测的命题采用了全国Ⅲ卷的形式,在测试结束后,该校数学组教师对该校全体高三学生的选做题得分情况进行了统计,得到两题得分的列联表如下(已知每名学生只做了一道题):

选做22

选做23

合计

文科人数

50

60

理科人数

40

总计

400

1)完善列联表中的数据,判断能否有的把握认为“选做题的选择”与“文、理科的科类”有关;

2)经统计,第23题得分为0的学生中,理科生占理科总人数的,文科生占文科总人数的,在按分层抽样的方法在第23题得分为0的学生中随机抽取6名进行单独辅导,并在辅导后随机抽取2名学生进行测试,求被抽中进行测试的2名学生均为理科生的概率.

附:,其中.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)求的单调区间;

(2)讨论零点的个数;

(3)当时,设恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的.为了解某市盲拧魔方爱好者的水平状况,某兴趣小组在全市范围内随机抽取了名魔方爱好者进行调查,得到的情况如表所示:

用时(秒)

男性人数

15

22

14

9

女性人数

5

11

17

7

附:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

1)将用时低于秒的称为“熟练盲拧者”,不低于秒的称为“非熟练盲拧者”.请根据调查数据完成以下列联表,并判断是否有的把握认为是否为“熟练盲拧者”与性别有关?

熟练盲拧者

非熟练盲拧者

男性

女性

2)以这名盲拧魔方爱好者的用时不超过秒的频率,代替全市所有盲拧魔方爱好者的用时不超过秒的概率,每位盲拧魔方爱好者用时是否超过秒相互独立.那么在该兴趣小组在全市范围内再次随机抽取名爱好者进行测试,其中用时不超过秒的人数最有可能(即概率最大)是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求所有正整数,使得给定序列中的每一项都是平方数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关线性回归分析的四个命题:

①线性回归直线必过样本数据的中心点();

②回归直线就是散点图中经过样本数据点最多的那条直线;

③当相关性系数时,两个变量正相关;

④如果两个变量的相关性越强,则相关性系数就越接近于

其中真命题的个数为(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若对任意恒成立,求的取值范围;

(2)若函数有两个不同的零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出的值分别为( )

(参考数据:

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系的极坐标方程为,直线l的参数方程为,(其中为参数)直线l与交于A,B两个不同的点.

求倾斜角的取值范围;

求线段AB中点P的轨迹的参数方程.

查看答案和解析>>

同步练习册答案