精英家教网 > 高中数学 > 题目详情

如图,四棱锥P-ABCD的底面是矩形,侧面PAD丄底面ABCD,..

(1)求证:平面PAB丄平面PCD
(2)如果AB=BC=2,PB=PC=求四棱锥P-ABCD的体积.

(1) 见解析 (2)

解析试题分析:(1)欲证平面平面,只需证其中的一个平面经过另一平面的一条垂线即可,考虑到题设中所给的矩形以及面面垂直关系,易证:,从而平面
(2)作,垂足为,连结;可证的中点,
从而求得四棱锥的高,进一步求得四棱锥的体积.
试题解析:(Ⅰ)因为四棱锥的底面是矩形,所以
又侧面底面,所以
,即,而,所以平面
因为PAÌ平面PAB,所以平面PAB⊥平面PCD.                     4分

(Ⅱ)如图,作PO⊥AD,垂足为O,则PO⊥平面ABCD.
连结OB,OC,则PO⊥OB,PO⊥OC.
因为PB=PC,所以Rt△POB≌Rt△POC,所以OB=OC.
依题意,ABCD是边长为2的正方形,由此知O是AD的中点.          7分
在Rt△OAB中,AB=2,OA=1,OB=
在Rt△OAB中,PB=,OB=,PO=1.                          10分
故四棱锥P-ABCD的体积V=AB2·PO=
考点:1、平面与平面垂直的判定与性质;2、棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(1)求证:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

菱形的边长为3,交于,且.将菱形沿对角线折起得到三棱锥(如图),点是棱的中点,

(1)求证:平面平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.四边形都是边长为的正方形,点的中点,平面.

(1)求证:平面平面;
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个多面体的直观图和三视图如图所示,其中M,N分别是AB,AC的中点,G是DF上的一动点.

(1)求该多面体的体积与表面积;
(2)求证:GN⊥AC;
(3)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,∠BAC=90°,∠B=60°,AB=1,D为线段BC的中点,E、F为线段AC的三等分点(如图①).将△ABD沿着AD折起到△AB′D的位置,连结B′C(如图②).

图①

图②
(1)若平面AB′D⊥平面ADC,求三棱锥B′-ADC的体积;
(2)记线段B′C的中点为H,平面B′ED与平面HFD的交线为l,求证:HF∥l;
(3)求证:AD⊥B′E.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥PABCD中,PA⊥底面ABCD,PA=2,BC="CD=2," ∠ACB=∠ACD=.

(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥PBDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.

(1)证明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABDA1B1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥S ­ABC中,平面EFGH分别与BC,CA,AS,SB交于点E,F,G,H,且SA⊥平面EFGH,SA⊥AB,EF⊥FG.

求证:(1)AB∥平面EFGH;
(2)GH∥EF;
(3)GH⊥平面SAC.

查看答案和解析>>

同步练习册答案